• Title/Summary/Keyword: Electrical Devices

Search Result 5,733, Processing Time 0.042 seconds

Electrical Characteristics of Si-O Superlattice Diode (Si-O 초격자 다이오드의 전기적 특성)

  • Park, Sung-Woo;Seo, Yong-Jin;Jeong, So-Young;Park, Chang-Jun;Kim, Ki-Wook;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.175-177
    • /
    • 2002
  • Electrical characteristics of the Si-O superlattice diode as a function of annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy (MBE) system. Consequently, the experimental results of superlattice diode with multilayer Si-O structure showed the stable and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic and quantum device as well as for the replacement of silicon-on-insulator (SOI) in ultra high speed and lower power CMOS devices in the future, and it can be readily integrated with silicon ULSI processing.

  • PDF

Characteristic Effects of Buffer Layers on Organic Light Emitting Devices

  • Park, Jae-Hoon;Lee, Yong-Soo;Kwak, Yun-Hee;Choi, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.43-48
    • /
    • 2001
  • The stability and efficiency of organic light emitting devices are the most critical problems to be solved. The devices based on tris-8-(hydroxyquinoline) aluminum ($Alq_3$) and N,N-diphenyl-N,N-bis(3-methylphenyl)-1, 1-biphenyl-4,4-diamine (TPD) were used to study the effects of buffer layers on their characteristics. We have investigated the characteristic effects of CuPc (copper phthalocyanine) and pentacene buffer layers on the device characteristics, the (5${\sim}$20 nm thick) CuPc layers and the (10${\sim}$20 nm thick) pentacene layers were deposited. Efficiency was slightly improved and the turn-on voltages of the devices with the buffer layers were observed to have lower values than those of the devices without the buffer layers. It is believed that this result is attributed to the improvement of hole injection capability through the buffer layers into hole transport layer (HTL). We have also studied the atomic force microscopic images of the TPD layers deposited on the buffer layer and the bare ITO.

  • PDF

A General Approach to Encoding Heuristics on Programmable Logic Devices

  • Leong, J.Y.;Lim, M.H.;Lau, K.T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.917-920
    • /
    • 1993
  • Various forms of hardware alternatives exist for the implementation of fuzzy logic controllers. In this paper, we describe a systematic framework for realizing fuzzy heuristics on programmable-logic-devices. Our approach is suitable for the automated development of fuzzy logic controllers.

  • PDF

Dynamic Resource Allocation of Random Access for MTC Devices

  • Lee, Sung-Hyung;Jung, So-Yi;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.546-557
    • /
    • 2017
  • In a long term evolution-advanced (LTE-A) system, the traffic overload of machine type communication devices is a challenge because too many devices attempt to access a base station (BS) simultaneously in a short period of time. We discuss the challenge of the gap between the theoretical maximum throughput and the actual throughput. A gap occurs when the BS cannot change the number of preambles for a random access channel (RACH) until multiple numbers of RACHs are completed. In addition, a preamble partition approach is proposed in this paper that uses two groups of preambles to reduce this gap. A performance evaluation shows that the proposed approach increases the average throughput. For 100,000 devices in a cell, the throughput is increased by 29.7% to 114.4% and 23.0% to 91.3% with uniform and Beta-distributed arrivals of devices, respectively.

SiC MOSFET Compared to Si Power Devices during Short Circuit Test (실리콘 카바이드와 실리콘 MOSFET의 단락회로 특성비교)

  • Nguyen, Thanh That;Ashraf, Ahmed;Park, Joung Hu
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.89-90
    • /
    • 2013
  • Higher power density, higher operational temperature, lower on state resistance and higher switching frequency capabilities of Silicon Carbide (SiC) technology devices compared to Silicon (Si) devices makes it has higher promising market. One of the most developed SiC devices is the power MOSFET. This study tests the SiC MOSFET under short circuit conditions taking into account the effect of gate voltage characteristics. The results will be compared to IGBT and MOSFET Si devices with similar ratings. A tester circuit was designed to perform the short circuit operation.

  • PDF

A Study on the improvement in efficiencies of Organic-Light Emitting Devices Using the Phosphor, Ir(PPy)$_3$ (인광물질 인 Ir(PPy)$_3$를 이용한 유기전기발광소자의 효율 개선에 관한 연구)

  • 김준호;김윤명;구자룡;이한성;하윤경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.178-181
    • /
    • 2001
  • The organic light-emitting devices (OLEDs) based on fluorescence have low efficiencies due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100 %, compared to 25 % in the case of the fluorescent material. Thus, the phosphorescent OLEDs have recently been extensively studied and showed higher internal quantum efficiencies then the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs, with the green emitting phosphor, Ir(ppy)$_3$ (tris(2-phenylpyridine)iridium). The devices with a structure of ITO/TPD/Ir(PPy)$_3$ doped in the host material/BCP/Alq$_3$/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of Ir(PPy)$_3$ and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF

The study on the characteristics of organic light emitting devices using Ir (Ir 착화합물을 이용한 유기발광소자의 특성연구)

  • 김준호;표상우;정래영;하윤경;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.214-217
    • /
    • 2002
  • The internal quantum efficiency of organic light emitting devices(OLEDs) using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in OLEDs. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer OLEDs with phosphorescent emitter, Iridium complexes were prepared. The devices with a structure of ITO/TPD/Ir complex doped in the host material/Alq3/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. Using various Ir complexes and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF

A Study on the 0.5μm Dual Gate High Voltage CMOS Process for Si Liquid Display System (실리콘 액정표시 장치 시스템을 위한 00.5μm 이중 게이트 고전압 CMOS 공정 연구)

  • 송한정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1021-1026
    • /
    • 2002
  • As the development of semiconductor process technology continue to advance, ICs continue their trend toward higher performance low power system-on-chip (SOC). These circuits require on board multi power supply. In this paper, a 0.5 ㎛ dual date oxide CMOS Process technology for multi-power application is demonstrated. 5 V and 20 V devices fabricated by proposed process is measured. From 5 V devices using dual gate precess, we got almost the same characteristics as are obtained from standard 5 V devices. And the characteristics of the 20 V device demonstrates that 3 ㎛ devices with minimum gate length are available without reliability degradation. Electrical parameters in minimum 3 ㎛ devices are 520 ㎂/㎛ current density, 120 ㎷ DIBL, 24 V BV for NMOS and ,350 ㎂/㎛ current density, 180 ㎷ DIBL, 26 V BV for PMOS, respectively.

Protective Devices Allocation Optimization for Electrical Distribution System

  • Bupasiri, Rosawan;Wattanapongsakorn, Naruemon;Hokierti, Jamnarn
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.433-436
    • /
    • 2002
  • Most of electric distribution utilities have their reliability performance measured by reliability indices such as SAIFI and SAIDI to evaluate customer satisfaction. Adding protective devices in electrical distribution system can increase the system reliability by protecting public customers from local faults. In large-scale distribution system, it is difficult to determine the positions of these protective devices, which can efficiently protect customers within utilities' investment. In this paper, we propose an optimization technique to identify types and positions of protective devices to minimize SAIFI and SAIDI indices according to system requirement constraints.

  • PDF

Electrical Effects of the Adhesion Layer Using the VDP Process on Dielectric

  • Lee, Dong-Hyun;Pyo, Sang-Woo;Hyung, Gun Woo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1313-1316
    • /
    • 2005
  • In the present paper, it was investigated that adhesion layer on gate insulator could affect the electrical characteristics for the organic thin film transistors (OTFTs). The polyimide (PI) as organic adhesion layer was fabricated by using the vapor deposition polymerization (VDP) processing . It was found that electrical characteristics improved comparing OTFTs using adhesion layer to another. We researched adhesion layer as a function of thickness. For inverted-staggered top contact structure, field effect mobility, threshold voltage, and on-off current ratio of OTFTs using adhesion layer of PI 15 nm thickness on the gate insulator with a thickness of 0.2 ${\mu}m$ were about 0.5 $cm^2/Vs$, -0.8 V, and $10^6$, respectively.

  • PDF