• Title/Summary/Keyword: Electrical Conductivity (EC)

Search Result 391, Processing Time 0.021 seconds

Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.) (부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향)

  • Kim, Young-Nam;Cho, Ju Young;Yoon, Young-Eun;Choe, Hyoen Ji;Cheong, Mi Sun;Lee, Mina;Kim, Kwon-Rae;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.

Water Quality Assessment and Turbidity Prediction Using Multivariate Statistical Techniques: A Case Study of the Cheurfa Dam in Northwestern Algeria

  • ADDOUCHE, Amina;RIGHI, Ali;HAMRI, Mehdi Mohamed;BENGHAREZ, Zohra;ZIZI, Zahia
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.563-573
    • /
    • 2022
  • This work aimed to develop a new equation for turbidity (Turb) simulation and prediction using statistical methods based on principal component analysis (PCA) and multiple linear regression (MLR). For this purpose, water samples were collected monthly over a five year period from Cheurfa dam, an important reservoir in Northwestern Algeria, and analyzed for 12 parameters, including temperature (T°), pH, electrical conductivity (EC), turbidity (Turb), dissolved oxygen (DO), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), phosphate (PO43-), total suspended solids (TSS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results revealed a strong mineralization of the water and low dissolved oxygen (DO) content during the summer period. High levels of TSS and Turb were recorded during rainy periods. In addition, water was charged with phosphate (PO43-) in the whole period of study. The PCA results revealed ten factors, three of which were significant (eigenvalues >1) and explained 75.5% of the total variance. The F1 and F2 factors explained 36.5% and 26.7% of the total variance, respectively and indicated anthropogenic pollution of domestic agricultural and industrial origin. The MLR turbidity simulation model exhibited a high coefficient of determination (R2 = 92.20%), indicating that 92.20% of the data variability can be explained by the model. TSS, DO, EC, NO3-, NO2-, and COD were the most significant contributing parameters (p values << 0.05) in turbidity prediction. The present study can help with decision-making on the management and monitoring of the water quality of the dam, which is the primary source of drinking water in this region.

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.

Characteristics of Plants Distribution by Vegetation Community at Janghang Wetland in Han-river Esturary, Korea (한강 하구 장항습지의 식생군락별 식물 분포 특성)

  • Mi-yeo Na;Choong-hyeon Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.59-69
    • /
    • 2023
  • This study was carried for the purpose of using basic data for vegetation management plans by analyzing the current status of herbaceous community and Salix spp. community at Janghang Wetland in Han-river estuary. In order to investigate the vegetation status, the 50 plots were investigated and analyzed using the quadrat and Braun-Branquet method. In the herbaceous community, were found a total of 31 taxa of 11 families, 24 genera, 28 species, and 3 variants. A total of 42 taxa of 16 families, 33 genera, 39 species and 3 variants were appeared in the Salix subfragilis community, and a total of 46 taxa with classification of 19 families, 37 genera, 43 species, and 3 varieties were founded in the Salix koreensis community. As for the analysis of life-form and dominance, the hydatophytes was relatively high in the Salix subfragilis community, the hemicryptothytes was high in herbaceous community and therophytes was high in Salix koreensis community. As a result of correlation analysis of electrical conductivity(EC) and exchangeable sodium(Na+) in the soil, hydatophytes and hemicryptothytes showed a negative correlation, and therophytes showed a positive correlation. Therefore, it was analyzed that Salix koreensis and therophytes have a high rate of appearance in relatively dry and salty soil. Salix subfragilis, hydatophytes, and hemicryptothytes have a high rate of appearance in low salt concentrations and wet areas.

Characteristics of benthic macroinvertebrate community and distribution of golden apple snail in certified environmentally-friendly paddy field complexes of South Korea (친환경 인증 논의 저서성 대형무척추동물 군집과 왕우렁이 분포의 특성)

  • Jeong Hwan Bang;I-Chan Shin;Young-Mi Lee;Dong-Gyu Lee;Mi-Jung Park;Seulgi Lee;Hyun-Jo Yoon;Sang-Gu Park;Yong-In Kuk;Sung-Jun Hong
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.126-137
    • /
    • 2023
  • Paddy fields provide important habitats for biodiversity conservation within the agricultural ecosystem. Their importance is gradually increasing as their ecological value is better understood. Benthic macroinvertebrates dominate paddy fields. They play an essential role in maintaining the biodiversity of paddy ecosystems. This study aimed to analyze characteristics of benthic macroinvertebrate communities and main environmental factors affecting the distribution of golden apple snails (Pomacea canaliculata). Results showed that the diversity index (H') of the benthic macroinvertebrate community was the highest at the Sangju site (St. 12) but the lowest at the Sancheong site (St. 18). Total Dissolved Solids (TDS), salinity, and Electrical Conductivity (EC) values were the highest in Gimhae and Yeongam based on Canonical Correspondence Analysis (CCA). Numbers of P. canaliculata (m-2) were relatively low in Gunsan and Iksan where water temperatures were high. Therefore, changes in geographical characteristics and environmental factors might affect the distribution of P. canaliculata and characteristics of benthic macroinvertebrate communities. Results of this study can be used as primary data for biodiversity conservation and ecosystem service evaluation in agroecosystems.

Effect of Soil Salinity for Ecological Restoration in the Reclaimed Area of Seasides (임해매립지의 생태계 복구를 위한 토양중 염류의 활성도 분석)

  • Chang, Kwan-Soon;Kim, Hyong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.147-154
    • /
    • 1999
  • This study was carried out to obtain reasonable management method of salt-affected soil for ecological restoration in the reclaimed land. Chemical properties of reclaimed soil was investigated base on reclamation years. Ionic acitivity in soil and satruration extract were analyzed to estimate the effect of salt interception by planting ground treatment. The soil porperties of reclaimed land was saline-sodic soil with $11.3dSm^{-1}$ of electrical conductivity, 34.8% of exchangeable sodium percent in first reclamation year. Electrical conductivity, exchangeable sodium and exchangeable chlorine were remarkedly decreased during six years after reclamation but chemical properties of reclaimed soil was unsuitable status for tree growth. Exchangeable sodium perecnt was higher in the neighborhood parks and street tree sites than in the buffer green spaces and was higher in subsoil than in topsoil of profile in all sites. Content of soduim, chloride and sulfate in saturation extract were more than other ions. Content of soduim and chloride were higher in the neighborhood parks and street tree sites than in the buffer green spaces and were higher in subsoil than in topsoil. Content of calcium plus magnesium of soil was higher in the buffer green space than in the neighborhood park and street tree but content of calcium and magnesium in saturation extract were higher, as result from exchangeable sodium, in the neighborhood parks and street tree sites than in the buffer green spaces. Concentration of salt in soil showed the difference with mounding height and planting ground treatment. The lowest concentration of salt appeared in buffer green spaces and street tree sites was the highest. Salt interception by mounding height in the same planting ground treatment was more effective 120cm of mounding height than 70cm of mounding height.

  • PDF

Effect of Nutrient Solution Strength and Duration of Nutrient Starvation on Growth and Flowering of Two Strawberry Cultivars (양액 강도와 공급 중단 시기에 따른 삽목번식한 2품종 딸기의 생장과 개화 반응)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • This study was conducted to investigate the effect of nutrient solution strength and duration of nutrient starvation on the growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' and 'Sulhyang' at the flowering stage. Cuttings of runner plants were stuck on November 23th, 2017 and were covered with a layer of black plastic film to block light from penetrating and keep the relative humidity high. The black plastic film was removed after 16 days and rooted plants were cultivated for one month with irrigation of water. The Yamazaki nutrient solution with an electrical conductivity (EC) of 1.85 or 3.71 dS·m-1 (1x or 2x ionic strength, respectively) and pH 5.55 was fed to plants after either 0 (control), 1, 3 or 5 weeks of nutrient starvation to the end of experiment. Plant height in both cultivars decreased gradually with the increase in duration of nutritional starvation. The earlier the nutritional starvation started, the smaller the shoot fresh weight of 'Maehyang'. Hence the greatest shoot fresh weight was obtained in the control which was supplied with the nutrient solution continuously. Shoot fresh weight of 'Sulhyang' was the greatest in 1x ionic strength and one week of nutrient starvation before planting. Although number of flowers on the first flower cluster of 'Maehyang' and 'Sulhyang' showed no significant differences, 'Maehyang' had the greatest number of flowers in the 2x ionic strength solution and one week of nutrient starvation before planting, while 'Sulhyang' had that in the 1x ionic strength treatment. These results suggest that it is considered effective to supply a nutrient solution at a low concentration for a short period of time for increasing the number of flower differentiated on the first flower cluster in both cultivars.

Influences of Solifluction and Sediment Runoff on the Stream Water Qualities in the Northeastern Area of Bukhansan National Park (북한산국립공원(北漢山國立公園) 북동사면(北東斜面)에서 동결융해침식(凍結融解浸蝕) 및 토사유출(土砂流出)이 계류수질(溪流水質)에 미치는 영향(影響))

  • Park, Jae Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.513-523
    • /
    • 2001
  • This study was conducted to investigate influences of solifluction and sediment runoff on the stream water qualities during the spring season. The study sites were four points in the northeastern area of the Bukhansan National Park. And, field surveys were carried out in the spring of 1999, 2000 and 2001. The results of this study were summarized as follows; During the investigation period, the amounts of sediment caused by solifluction on stream side slopes in the downstream were 1.3~1.7 times as large as those in the upstream. The pH of sediment caused by solifluction was a potential influence on the pH of stream water. Amounts of dissolved $Cl^-$, $NO_3{^-}$ and $SO{_4}^{2-}$ in stream water were proportion to the average amounts of $Cl^-$, $NO_3{^-}$ and $SO{_4}^{2-}$ in the sediment caused by solifluction. In the spring, the average pH of stream water was lower than the first class of the river water quality standard because of increasing chemical concentration as well as the contents of anions($Cl^-$, $NO_3{^-}$ and $SO{_4}^{2-}$) in the spring season. Also, the average electrical conductivity of water in downstream was about 2.3-3.3 times higher than that in upstream. The amounts of anions($Cl^-$, $NO_3{^-}$ and $SO{_4}^{2-}$) of water in downstream were about 1.2~7.4, 1.1~3.9, 1.1~1.4 times higher than those in upstream, respectively. Therefore, these results showed that the water quality of downstream was worse than that of upstream. As a result of regression analyses, the linear and exponential equation of pH and water quantity was pH = 1.7926 ${\times}$ stream water quantity + 5.9577($R^2=0.46$), and those of electrical conductivity and water quantity was $EC=34.417e^{3.6334{\times}\text{stream water quantity}(m^3/sec)}$ ($R^2=0.44$).

  • PDF

Effect of Soil Salinity on Growth, Yield and Nutrients Uptake of Whole Crop Barley in Newly Reclaimed Land (신간척지에서 토양 염농도가 청보리 생육, 수량 및 양분 흡수에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Shin, Pyung;Yang, Chang-Hyu;Back, Nam-Hyun;Lee, Kyeong-Bo;Baek, Seung-Hwa;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • BACKGROUND: Newly reclaimed land has poor soil environment for crop growth since it is high in salt concentration but low in organic content compared with ordinary soil. It is known that whole-crop-barley can grow better in the soil of relatively high salt concentration than other crops but, the growth is poor at the concentration if higher than certain amount and it is a difficulty to secure productivity. Hence, the level of soil salt concentration suitable for the production of bulky feed in newly reclaimed land has been investigated. METHODS AND RESULTS: At Saemanguem reclaimed land, the land for the soil salt concentration electrical conductivity (EC) 0.8, 3.1, 6.5, 11.0 dS/m was selected; and chemical fertilizer $N-P_2O_5-K_2O$ (150-100-100kg/ha) was tested; and forage barley 220kg/ha were sown. The soil salt concentration during the cultivation period decreased in the order of harvest season>earing season>sowing season>wintering season, and the salt concentration in harvest season is 1.4-4.2 times higher than that of the sowing season. The higher the salt concentration, the poorer the over ground growth due to poor rooting; especially at EC 11.0 ds/m there was emergence but, it blighted after wintering. The Yield from the soil salt concentration 3.1dS/m and 6.5 dS/m was 68% and 35% from that of the soil salt concentration 0.8 dS/m (8.8 MT/ha) respectively. The proline content in early life stage was more than that of the harvest season, and it increased with salt concentration. The higher salt concentration, the more $Na_2O$ and MgO content in harvest season; but the higher the salt concentration, the less the content of N, $P_2O_5$, $K_2O$ and CaO. CONCLUSION(S): When the soil salt concentration becomes higher than 3.1 dS/m, the yield becomes poor because there is serious growth inhibition of forage barley both in root part and above aerial part that results in unbalanced absorption of nutrients. Therefore, it is recommended that the salt concentration should be lowered below 3.1 dS/m by underground drainage facilities or irrigating water for the stable production of whole-crop-barley.

Effects of Polyethylene Mulch and Levels and Placements of Nitrogen on Soil Properties and Sweet Corn Growth (비닐 피복, 질소시비량 및 시비방법이 토양의 이화학적 특성과 단옥수수의 생육에 미치는 영향)

  • 이석순;백준호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.334-339
    • /
    • 1985
  • A sweet corn hybrid, Honey Bantam, was planted on 24 May, 1984 in a silty clay loam soil to investigate the effects of polyethylene(P.E.) mulch and different levels and placements of Nitrogen(N) on soil properties and sweet corn growth. A split-split plot design with three replications was employed; P.E. mulch and bare soil were main plot, N levele of 8, 12, 16, and 20 kg/10a were subplot, and band and broadcast of fertilizers were sub-subplots. At early growth stage soil temperature under P.E. mulch was higher than that in bare soil by 5-10$^{\circ}C$, but the differences decreased as plant growth advanced. Soil hardness increased with soil depth while P.E. mulch reduced soil hardness probably by holding high soil moisture. Soil pH decreased up to the 6th week after planting and then increased in bare soil, but it contineously decreased up to the 8th weeks under P.E. mulch regardless N levels and placements. Electrical conductivity(EC) of soil increased up to the 6th weeks after planting and then decreased in all treatments except broadcast of fertilizers under P.E. mulch where EC increased contineously. Generally, soil EC under P.E. mulch was higher than that in broadcast. Broadcast of fertilizers did not affect emergence of seedlings in all N levels under P.E. mulch and bare soil, but band of fertilizers at all N levels under P.E. mulch and higher levels of N in bare soil reduced emergence rate significantly. Percent stand was possitively correlated with soil EC and it strongly influenced the number of marketable ears. Plant growth was enhanced and silking date was earlier by 14-19 days under P.E. mulch compared to bare soil probably due to increased soil moisture, reduced soil hardness and higher soil temperature.

  • PDF