• Title/Summary/Keyword: Electrical Conductivity (EC)

Search Result 387, Processing Time 0.029 seconds

Impacts of Unsystematic Solid Waste Dumping on Soil Properties and Climate Change

  • Benish ZAHRA;Farida BEGUM;Woo-Taeg KWON;Seung-Jun WOO;Min-Jae JUNG
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.31-42
    • /
    • 2024
  • Purpose: Open-air dumping is a significant problem in Gilgit City, with limited research analyzing waste generation and its physicochemical impact on the soil. This study aimed to evaluate the effects of open dumping on soil properties and compare them with a controlled site. Research Design, data, and Methodology: Using ANOVA, the study found significant differences in electrical conductivity (EC), soil organic matter (SOM), soil organic carbon (SOC), sand, silt, and clay between the two sites, except for pH. Pearson correlation revealed that pH negatively correlated with EC, sand, and silt, but positively with SOM, SOC, and clay. The control site's mean EC was 6.06 mS/m, whereas the dumping site recorded 8.5 mS/m. EC is inversely related to SOM, SOC, silt, and clay, but directly to sand. SOC and SOM values varied significantly, with notable differences in soil texture components like clay and silt. Results: The research highlights the detrimental effects of unsystematic waste dumping on soil health and its contribution to greenhouse gas emissions, particularly methane, which exacerbates climate change. Conclusion: The study concluded that waste deposition and decomposition significantly impact EC, SOM, SOC, and soil texture, though pH remains unchanged. The unsystematic dumping of solid waste contributes to climate change through methane production, a potent greenhouse gas. To mitigate these impacts, the study recommends regular monitoring, waste prevention, recycling strategies, and continuous training for stakeholders to achieve sustainable development.

The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity (강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구)

  • Park, Hyemin;Byun, Myounghwa;Kim, Taeyong;Kim, Jae-Jin;Ryu, Jong-Sik;Yang, Minjune;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1669-1679
    • /
    • 2020
  • This study examines the washing effect of precipitation on particulate matter (PM) and the rainwater quality (pH, electrical conductivity (EC), water-soluble ions concentration). Of six rain events in total, rainwater samples were continuously collected every 50 mL from the beginning of the precipitation using rainwater collecting devices at Pukyong National University, Busan, South Korea, from March 2020 to July 2020. The collected rainwater samples were analyzed for pH, EC, and water-soluble ions (cations: Na+, Mg2+, K+, Ca2+, NH4+, and anions: Cl-, NO3-, SO42-). The concentrations of particulate matter were continuously measured during precipitation events with a custom-built PM sensor node. For initial rainwater samples, the average pH and EC were approximately 4.3 and 81.9 μS/cm, and the major ionic components consisted of NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl- (4.1 mg/L). In all rainfall events, rainwater pH gradually increased with rainfall duration, whereas EC gradually decreased due to the washing effect. When the rainfall intensities were relatively weak (<5 mm/h), PM10 reduction efficiencies were less than 40%. When the rainfall intensities were enhanced to more than 7.5 mm/h, the reduction efficiencies reached more than 60%. For heavy rainfall events, the acidity and EC, as well as ions concentrations of initial rainwater samples, were higher than those in later samples. This appears to be related to the washing effect of precipitation on PM10 in the atmosphere.

Changes in Habitats of Fish and Amphibian Due to Erosion Control Dam Constructed in a Mountain Stream, Gongju, Chungchoengnamdo (충청남도 공주시 소재 산지계류 내 시공된 사방댐에 의한 어류 및 양서류 서식의 변화)

  • Lee, Sang In;Seo, Jung Il;Kim, Suk Woo;Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.241-258
    • /
    • 2019
  • The aim of this study was to analyze the factors that affect the habitat of fishes and amphibians in a mountain stream that is part of an experimental forest at Kongju National University, Gongju, Chungcheongnam, Korea, and examine the differences in the presence of fishes and amphibians in the stream before and after construction of an erosion control dam. The results showed that the factors that affect the presence of fishes are pH, electrical conductivity (EC), dissolved oxygen (DO), flow velocity, and step-pool number, and that the factors that affect the presence of amphibians are monthly rainfall, pH, EC, DO, and crown density. Of these factors, pH, EC, flow velocity, and monthly rainfall were significantly different before and after dam construction; however, the differences among the other three factors from dam construction, except EC, might not have been enough to affect the presence of fishes and amphibians. Our results suggest that the difference in the frequency of fishes and amphibians surveyed before and after dam construction in the upper and lower stream sections were not statistically significant. One exception to this was the presence of amphibians in the lower stream section during and after dam construction, which could have been the result of a large amount of sediment produced by excavation that led to high EC.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.

Variation of Suspended Solid Concentration, Electrical Conductivity and pH of Stream Water in the Regrowth and Rehabilitation Forested Catchments, South Korea (개벌 재생림유역과 사방지 혼효림유역에서 강수시 계류수의 부유물질농도 및 전기전도도와 pH 변화)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Choi, Hyung Tae;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • This study was conducted to investigate how the qualities of the stream water vary during the event in the regrowth and rehabilitation catchments in Yangju, Gyeonggido, from June to September 2005. During the observation periods, we sampled the stream water continuously by an auto-sampler (ISCO, 6712FR). The sampled waters were analyzed for suspended solid concentration, electrical conductivity and pH. The suspended solid concentration during the event increased concurrently with the stream flow. The peak of suspended solid concentration usually precedes the peak flow. The maximum value of suspended solid concentration was 420.89 mg/l in the event 1 at the regrowth catchment. Among the events simultaneously sampled at both catchments, the maximum values of suspended solid concentration were 212.8 mg/l and 58.24 mg/l in the event 3 at the regrowth and rehabilitation catchment respectively. The maximum value of EC in each event showed in the early stage of rising limb. EC decreased during the rising limb, and then showed minimum value at peak flow. EC gradually increased to pre-event value after minimum one. pH varied in similar pattern with EC. The maximum value of suspended solid concentration during each event was 2.8 to 4.3 times higher at the regrowth catchment than at the rehabilitation catchment. And the EC during each event was higher at the regrowth catchment than at the rehabilitation catchment. This results indicate that a disturbed forest soil during clear cutting at regrowth catchment still has been unstable.

Evaluation of Slurry, Urine and Fermented Liquid Manure at Pig Farms in the Jeju Area Regarding Chemical Composition and Pollution Level (제주지역 양돈장에서 생산된 액비의 비료성분 및 오염도 평가)

  • Kim, M.C;Song, S.T.;Hwang, K.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.469-478
    • /
    • 2004
  • Pig slurry, urine and fermented liquid manure were evaluated measuring electrical conductivity (EC), dry matter (DM) contents and other components. Samples were collected during a period from February to April, 2001: slurry samples from 70 storage tanks, urine samples from 19 and 20 fermented liquid manure samples from 109 pig farms in Jeju. Samples were analyzed for pH, EC, DM, $NH_4$-N, K, P, Ca, Mg, Na, BOD, S-S, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn and OM. Relationships between EC or DM and various mineral and $NH_4$-N contents were examined using linear regression. EC, DM, all mineral contents and $NH_4$-N were higher in slurry samples than in urine or fermented liquid manure. EC, $NH_4$-N, Ca, Mg and Na concentration was similar in urine and fermented liquid manure, but K and DM values in liquid manure were twice as much as in urine. P concentration was higher in urine than in liquid manure. $NH_4$-N and Na in slurry, $NH_4$-N in urine and $NH_4$-N, P and Ca in fermented liquid manure were highly correlated with EC, while $NH_4$-N, P, Ca and Mg in slurry, $NH_4$-N and Ca in urine, and K, P, Ca, Mg, and Na in fermented liquid manure with DM (P<0.05). BOO in slurry (22,520 mg/mL) was higher than that in urine (4,763) and fermented liquid manure (2,701). Results indicated that slurry is a better fertilizer source than urine or fermented liquid manure. However, slurry may pollute soil more than urine or fermented liquid manure when applied to land, although the levels are not above the permit.

Effect of Mineral Nutrient Control on Nutrient Uptake, Growth and Yield of Single-Node Cutting Rose Grown in a Closed Hydroponic System (순환식 수경재배시 무기이온 조절이 Single-Node Cutting 장미의 양분흡수, 생육 및 품질에 미치는 영향)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.252-260
    • /
    • 2008
  • This study was conducted to observe the characteristics of mineral nutrient uptake of single-node cutting rose 'Versilla' and to determine optimal nutrient solution control method for soilless culture of 'Versilla' in a closed hydroponic system. Nutrient solution was managed by five different control methods: macro- and micro-element control in aeroponic system (M&M), macroelement control in aeroponic system (M), nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system(EC-A); EC control in deep flow technique system(EC-D). The concentration of $NO_3$-N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth with the EC control method, EC-A and EC-D. The overall mineral nutrient content increased with S. On the other hand the nutrient content at the root environment was maintained optimal with M&M and M. The nutrient solution control methods had significantly effect on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with the other mineral nutrients control methods. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Based on the above results, it is highly recommended to control nutrient solution by mineral nutrient control methods (M&M and M) in a closed hydroponic system for single-node cutting rose, 'Versillia'.

Growth Characteristics and Yields According to EC Concentrations and Substrates in Paprika (파프리카 수경재배 시 EC 농도와 배지에 따른 생육 및 수량 특성)

  • Hong, Youngsin;Lee, Jaesu;Baek, Jeonghyun;Lee, Sanggyu;Chung, Sunok
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.605-612
    • /
    • 2021
  • Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mS·cm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Poly(ethylene oxide)/Poly(vinylidene fluoride) Blend (고분자 전해질의 전도도 특성)

  • 김종욱;성창호;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.109-112
    • /
    • 1996
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for all-stolid-state lithium battery. We investigated conductivity, electrochemical properites and impedence spectroscopy of poly(ethylene oxide)[PEO]/poly(vinylidene fluoride)[PVOF] blend electrolytes and charge/discharge cycling of LiCoO$_2$/SPE/Li cell. By adding PVDF and plasticizer to PEO-LICIO$_4$electrolyte, its condustivity was higher than that of PEO-LiCIO$_4$electrolyte. Also PEO$_4$PVDF$_4$LiClO$_4$PC$_{5}$EC$_{5}$ remains stable up to 4.4V vs Li/Li. The discharge capacity of the LiCoO$_2$composite cathode was 92mAh/g based on LiCoO$_2$.EX>.

  • PDF