• Title/Summary/Keyword: Electric vehicle

Search Result 2,229, Processing Time 0.03 seconds

Development of Autonomous Steering Platforms for Upland Furrow (노지 밭고랑 환경 적용을 위한 자율조향 플랫폼 개발)

  • Cho, Yongjun;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Park, Hui Chang;Kang, Minsu;Park, Kwanhyung;Seo, Kabho;Kim, Sunduck;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-75
    • /
    • 2021
  • We developed a platform that was capable of autonomous steering in a furrow environment. It was developed to autonomously control steering by recognizing the furrow using a laser distance, three-axis tilt, and temperature sensor. The performance evaluation indicated that the autonomous steering success rate was 99.17%, and it was possible to climb up to 5° on the slope. The usage time was approximately 40 h, and the maximum speed was 6.7 km/h.

A Study on Building a Test Bed for Smart Manufacturing Technology (스마트 제조기술을 위한 테스트베드 구축에 관한 연구)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.475-479
    • /
    • 2021
  • There are many difficulties in the applications of smart manufacturing technology in the era of the 4th industrial revolution. In this paper, a test bed was built to aim for acquiring smart manufacturing technology, and the test bed was designed to acquire basic technologies necessary for PLC (Programmable Logic Controller), HMI, Internet of Things (IoT), artificial intelligence (AI) and big data. By building a vehicle maintenance lift that can be easily accessed by the general public, PLC control technology and HMI drawing technology can be acquired, and by using cloud services, workers can respond to emergencies and alarms regardless of time and space. In addition, by managing and monitoring data for smart manufacturing, it is possible to acquire basic technologies necessary for embedded systems, the Internet of Things, artificial intelligence, and big data. It is expected that the improvement of smart manufacturing technology capability according to the results of this study will contribute to the effect of creating added value according to the applications of smart manufacturing technology in the future.

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

Low-frequency modes in the fluid-structure interaction of a U-tube model for the steam generator in a PWR

  • Zhang, Hao;Chang, Se-Myong;Kang, Soong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1008-1016
    • /
    • 2019
  • In the SG (steam generator) of PWR (pressurized water reactor) for a nuclear plant, hundreds of U-shaped tubes are used for the heat exchanger system. They interact with primary pressurized cooling water flow, generating flow-induced vibration in the secondary flow region. A simplified U-tube model is proposed in this study to apply for experiment and its counterpart computation. Using the commercial code, ANSYS-CFX, we first verified the Moody chart, comparing the straight pipe theory with the results derived from CFD (computational fluid dynamics) analysis. Considering the virtual mass of fluid, we computed the major modes with the low natural frequencies through the comparison with impact hammer test, and then investigated the effect of pump flow in the frequency domain using FFT (fast Fourier transform) analysis of the experimental data. Using two-way fluid-structure interaction module in the CFD code, we studied the influence on mean flow rate to generate the displacement data. A feasible CFD method has been setup in this research that could be applied potentially in the field of nuclear thermal-hydraulics.

Optimization on Weight of High Pressure Hydrogen Storage Vessel Using Genetic Algorithm (유전 알고리즘을 이용한 고압 수소저장용기 중량 최적화)

  • Lee, Y.H.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.203-211
    • /
    • 2019
  • In this study, the weight of type IV pressure vessel is optimized through the burst pressure condition using the finite element analysis (FEA) based on the genetic algorithm (GA). The optimization design variables include the thickness of composite layers and the winding angles. The optimized design variables are validated using the numerical simulations for the pressure vessel. Consequently, the weight is decreased by about 6.5% as compared to the previously reported results for Type III pressure vessel. Additionally, a method which reduces the entire optimization time is proposed. In the original method, the population size is constant across all generations. However, the proposed method could reduce the workload through the reduction of the population size by half for every 25 generations. Thus, the proposed method is observed to increase the weight by about 0.1%, however, the working time for the optimization could be decreased by about 46.5%.

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

Analysis of Hydrogen-tightness on the Metal Sealing of a Fuel Pipe for FCEV according to Material Change of the Fitting Body (체결부 재료에 따른 FCEV 연료파이프 메탈 씰링부의 기밀성 분석)

  • Lee, J.M.;Han, E.S.;Chon, M.S.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.266-274
    • /
    • 2019
  • Metal sealing is used to connecting the parts between valves and fuel pipes for a FCEV which utilizes hydrogen gas of 700 bar. Instead of general carbon steel, stainless steel is the primary material used to manufacture fuel pipes due to hydrogen embrittlement. The shape of deformation between metals is an important factor on the air-tightness of the metal to metal contact. Since the stainless steel pipe is hardened using the plastic forming during the tip shaping stage, this work hardening could have an effect on the deformed shape and characteristics of contact surfaces in fastening of pipes. In this paper, the deformation history of the pipe model was considered in order to analyze the hydrogen-tightness on the metal sealing part. The contact distance and the forward displacement for fastening were compared using experimental results and the simulation results. The simulation of the effect of material change on the fitting body demonstrated that the hardness or the strength of the formed tip of the pipe was designed to a proper valued level since the characteristics of the contact surface was exhibited better when the strength of the pipe was lower than that of the fitting body.

Analysis of failure rate according to capacitor position of bidirectional converter (양방향 컨버터의 커패시터 위치에 따른 고장률 분석)

  • Kim, Ye-rin;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.261-265
    • /
    • 2019
  • We analyze the failure rate change of a conventional bidirectional converter and a modified one which moves an output capacitor towards propulsion battery. We analysis of the circuit structural homogeneity and the difference between both converters, and confirm that the capacitor working voltage is reduced by changing the capacitor position. After obtaining the capacitor failure rate according to voltage stress factor and operating temperature, it is applied to the fault-tree of the bidirectional converter to obtain the overall failure rate of the converter. We analyzes the advantages and disadvantages of design changes by comparing and analyzing the failure rate and mean time between failures (MTBF) according to operating temperature and capacitance value.

Study on Cooling of Hydrogen Gas for the Pre-Cooler in the Hydrogen Refueling Station (수소충전소용 프리쿨러를 위한 수소가스 냉각에 관한 연구)

  • LEE, KYUNG-HAN;KOO, KYUNG-MO;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • In the hydrogen refueling station (HRS), it is need the pre-cooling system (PCS) to limit the inside temperature ($85^{\circ}C$) of the onboard thank (700 bar) and to charge the hydrogen at short time (within 3 minutes) to fuel cell electric vehicle (FCEV). From those safety reasons, the temperature of hydrogen gas must be controled $-33^{\circ}C$ to $-40^{\circ}C$ in PCS. The cooling test of the gaseous ($N_2$, He, $H_2$) was carried out using heat exchanger (pre-cooler) by indirect cooling and direct cooling method. It was confirmed that the temperature of hydrogen gas had below $-40^{\circ}C$ at below $-75^{\circ}C$ of chiller temperature in direct cooling.

Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue (고온 저주기 피로에 의한 STS 304 압연강재의 특성연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Shin, D.C.;Kim, D.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.