• Title/Summary/Keyword: Electric system

Search Result 10,087, Processing Time 0.037 seconds

A Study on an Electric Power System Design of a Small Electric Vehicle (소형 전기자동차의 전기동력시스템에 관한 연구)

  • Sim, Hansub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • The electric power system design of the electric vehicle are required to improve the performance. The electric power system on the electric vehicle are consist of a battery, a pedal sensor, an electric motor and a controller. In this paper, Automotive manufacture's various electric vehicle models are investigated and analyzed. The mathematical models for the electric power system are studied, and then important variables are considered. Simulation and experimental test results show the model of the electric power system on the electric vehicle and design parameter decision are effective to the electric vehicle design.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

A Study on the Design of Small Unit SCADA System for Electric Railroad (전기철도용 소규모SCADA 시스템 설계방안에 관한 연구)

  • Lee, Seung-Chul;Shin, Kwan-Woo;Lee, Youn-Seop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.89-93
    • /
    • 2004
  • Supervisory Control And Data Acquisition(SCADA) of electric power system refersto the system that displays, monitors and executes the control commands for remote electric power system. KNR's existing electric power control system is built on UNIX platform such that it costs more for system construction, and people with UNIX skills can only be an operator who controls and manages the system. Moreover, since the system is mainly operated in local offices, system operators must communicate with local operators to investigate the cause of the accident and react the accident every time the system fails. As a new integrated SCADA system is constructed, establishment of small-unit electric power control system, that alters local electric power control system in designated stations, is required. In this study, the electric power control system, which accommodates all functions of UNIX-based SCADA system and facilitates operation and even maintenance for local operators, is to be developed. In order to develop small-unit electric power control system, the industrial automation program, "Cimon", is used. The small-unit electric power control system that accommodatesRTU and newly installed electronic switchboard is being developed and tested at Chulam station of KNR.

Merits of all-electric subsea production control system

  • Oh, Jin-Seok;Kang, Se-Ra
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.162-168
    • /
    • 2014
  • Recently, researches on all-electric subsea system have been in progress. This paper describes a subsea tree using a lot of electrical signal and subsea control system. The way of subsea control is classified as all-electric systems or electro hydraulic systems. One of that has more merits in terms of cost, weight, power consumption, etc. because it uses electric signal instead of hydraulic signal. This paper describes the difference of each system's power consumption and simulation. As the result, if each system applies the same number of sensors, actuators, etc. The power consumption of all-electric system's load is less than at least 400kWh/day compared to the electro hydraulic system load.

Implementation of Highly Integrated Total Energy System (전력수급 종합시스템 현장적용)

  • Park, Si-Woo;Yoon, Yong-Beum;Nam, Jae-Hyun;Choo, Jin-Boo;Choi, Bong-Soo;Lee, Hyo-Sang;Kim, Joon-Hwan;Lyu, Sung-Ho;Han, Seung-Goo;Baek, Woong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1525-1525
    • /
    • 1999
  • The main purpose of HITES(Highly Integrated Total Energy System) is to build and develop an integrated energy system for power system operational planning and analysis which consists of load forecast, economic generation schedule, stability analysis and relational database system. The HITES can be utilized to supply a stable electric power and operate KEPCO's power system facilities economically. This system was put into operation in 1999. This paper describes the main feature of the HITES, main functions, numerical methods adopted in this system and network configuration.

  • PDF

BESS Modeling and Application to Voltage Compensation of Electric Railway System (BESS 모델링 및 전기철도 급전계통에의 전압보상 적용)

  • Yoo, Hyeong-Jun;Son, Ho-Ik;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.417-423
    • /
    • 2013
  • The load of electric railroad can generate voltage fluctuation in the electric railway system because of high speed of the electric railroad and frequent movement and stop. This voltage fluctuation of electric railway system can cause not only voltage imbalance but also harmonic in the utility grid. Therefore the electric railroad system is in need of the reactive power compensation, such as static synchronous compensator (STATCOM) and static var compensator (SVC). Especially, the battery energy storage system (BESS) can control the real and reactive power at the same time. In this paper, the electric railway system using BESS has been modeled to show its voltage compensation effect using Matlab/Simulink.

A Study on Application Method of Brake System Modular Design for Medium and Large EV Architecture (중형 및 대형 EV 아키텍처를 위한 제동시스템 모듈러 설계 적용 방안에 관한 연구)

  • J. H. Shim;S. R. Hwang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • Many global car manufacturers in the world are recently developing a variety of electric vehicles in response to demanding market needs. Also, they have adapted the architecture method in order to develop electric vehicles effectively. It is because architecture method can produce various electric vehicles with high profitability. However, when electric vehicles are being developed, brake system has a lot of demanding tasks in relation to deciding specification of brake system because of heavy vehicle weight, narrow power electric room space and large volume of electric hydraulic booster. In this paper, a new approach is proposed for deciding the front and rear brake systems in order to design the brake system of electric vehicles effectively. To do this, we study correlations among vehicle weight, layout of power electric room and volume of electric hydraulic booster. And then, we also study combination of hydraulic braking and regenerative braking which is widely applied to electric vehicles. Finally, we want to contribute to build up modular design of brake system for architecture of electric vehicles through these studies.

A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis (경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구)

  • Kim, Si-Yeon;Hwang, Jae-Dong;Lim, Jong-Hun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

Electric Leakage Point Detection System of Underground Power Cable Using Half-period Modulated Transmission Waveform and Earth Electric Potential Measurement (반주기 변조된 송신파형과 대지전위 측정을 이용한 지중 케이블 누전 고장점 탐지 시스템)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2113-2118
    • /
    • 2016
  • The precise detection of electric leakage point of underground power cable is very important to reduce cost and time of maintenance and prevent electric shock accident through expedite repair of electric leakage point. This paper proposes a electric leakage point detection system underground power cable using of half-period modulated transmission waveform and earth electric potential measurement. The developed system is composed of transmitter to generate the wanted pulse waveform, receiver to measure and display earth electric potential by the transmitted pulse in electric leakage point and PC Software program to display of GPS coordinate on detection cable line. The performance of the electric leakage point detection system was tested in the constructed underground cable leakage detection test bed. The test results on signal generation voltage precision of signal transmitter, mean detection earth voltage, mean detection leakage current and electric leakage point detection error showed the developed system can be used in electric leakage point detection underground power cable.

Estimation of Electricity Price of the Imported Power via Interstate Electric Power System in North-East Asia (동북아 전력계통 연계를 통한 융통전력 도입 시 가격상한 수준에 대한 분석)

  • Kim, Hong-Heun;Chung, Koo-Hyung;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.128-132
    • /
    • 2006
  • Interstate electric power system, as an alternative for energy cooperation under regional economic bloc, has been hotly debated before progressing the restructure in electric power industry and rapidly expanded in many regions after 1990s. Especially, since northeast asia has strong supplementation in resource, load shape, fuel mix etc., electric power system interconnection in this region may bring considerable economic benefits. Moreover, since Korean electric power system has a great difficulty in a geographical condition to interrupt electricity transaction with other countries, it has been expanded as an independent system to supply all demand domestically. As a result, Korean electric power system makes considerable payment for maintaining system security and reliability and expands costly facilities to supply a temporary summer peak demand. Under this inefficiency, if there are electricity transactions with Russia via the North Korea route then economic electric power system operation nay be achieved using seasonal and hourly differences in electricity price and/or load pattern among these countries. In this paper, we estimate price cap of transacted electricity via interstate electric power system in northeast asia. For this study, we perform quantitative economic analysis on various system interconnection scenarios.