• Title/Summary/Keyword: Electric safety

Search Result 1,827, Processing Time 0.033 seconds

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1259-1260
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a 100m length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF

The Estimation of the Dielectric Strength Decrease of the Solid-solid Interfaces by using the Applied Voltage to Breakdown Time Characteristics

  • Shin, Cheol-Gi;Bae, Duck-Kweon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • In the complex insulation system that is used in extra high voltage(EHV) devices, according to the trend for electric power equipment of high capacity and reduction of its size, macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. In this paper, the dielectric strength decrease of the macro interfaces between epoxy and ethylene propylene diene terpolymer(EPDM) was estimated by using the applied voltage to breakdown time characteristics. Firstly, the AC short time dielectric strength of specimens was measured at room temperature. Then, the breakdown time was measured under the applied constant voltage which is 70% of short time breakdown voltage. With these processes, the life exponent n was determined by inverse power law, and the long time breakdown voltage can be evaluated. The best condition of the interface was LOS(low viscosity(350 cSt) silicone oil spread specimen). When 30 years last on the specimens, the breakdown voltage was estimated 44% of the short time breakdown voltage.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Demonstration study on Desalination System using Solar energy (태양에너지 해수담수화시스템 실증)

  • Kim, Jeong-Bae;Joo, Hong-Jin;Yoon, Eung-Sang;Joo, Moon-Chang;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.27-33
    • /
    • 2007
  • In this research, to develop the practical application system of fresh water generation system with plate-type fresh water generator using low pressure evaporation method is the main object, and to do that, this study used the evacuated solar collector with operating range of about $50-85^{\circ}C$ as thermal energy source and solar photovoltaic as electric energy source. To achieve that object, this study set up the demo-plant, then estimated and analyzed the usefulness, the safety, and the reliability through pre-tests during short time ahead of the long-time operation. This study showed that the pumps, which are including sea water supply, ejector, hot water supply, and fresh water pumps, were operated one after another. And, the fresh water yield was closely related with the solar irradiance and lower supply temperature of hot water was revealed more reasonable for the solar energy desalination system. That is due to the insufficient area than the solar collector area being required that was estimated through the performance tests of the fresh water generator.

Analysis of Distance between ATS and ATP Antenna for Normal Operation in Combined On-board Signal System

  • Kim, Minseok;Kim, Minkyu;Kim, Doogyum;Lee, Jongwoo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Railroad signaling systems are to control intervals and routes of trains. There are ATS, ATP, ATO and ATC system. Trains are operated in the section which is met on the signaling system because various signaling systems are used in Korea. Hence, trains are not operated in the section which is used in the other signaling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system designed by doubling the ATS, ATP and ATC system to ensure the safety of system. The inductance of antenna is change and in return the resonance frequency of antenna is varied by the electromagnetic induction. Therefore, the information signal is not received exactly in the combined on-board system and in return accidents between trains occur. In this paper, electric model of the combined on-board system for considering the ATS and ATP antenna is presented. Moreover, the mutual inductance including the distance between the ATS and ATP antenna is calculated. As a result of the frequency response of the antennas, the mutual inductance met on operation range of resonance frequency is defined.

Development of Holder Ampere Control Arc Welding System and It′s Usefulness (홀더 암페어 조절 아크용접 시스템 개발 및 그 유용성)

  • 이용복
    • Proceedings of the KWS Conference
    • /
    • 1994.10a
    • /
    • pp.89-92
    • /
    • 1994
  • According to the industrial development welding technology is necessitated to develop in the direction of full automation, high efficiency, energy saving, and full safety. In this study, thus, a simple holder ampere controller for welding systems is developed and applied to arc welders and its capability is examined and tested. The results are as follows: 1. It has a simple structure, since the primary AC power for the welder can be directly control led using a triac. 2. It can control the electric power strength in several steps as well as on and off easily, since a small-sized variable resistance is installed in the small controller on the welding holder. 3. In real field applications a welding system with this controller increases the working efficiency greatly compare to the conventional arc welders without the system, because the controller can control the ampere onsite far from the main power supply. 4. It can reduce the probability of the electrical mishap due to electrical leakage, since the electricity is disconnected as soon as the switch is off or welding person's hand is taken off from the welder after the work or for rest. 5. It can control the welding depth in the beginning and do the crater treatment well in the ending of welding, since it always supplies the relevent amount of electrical current. Therefore, it can improve the mechanical properties of the welding zone.

  • PDF

A Study on Machining Effects on Residual Stress at Dissimilar Metal Weld Region (기계가공이 이종용접부의 잔류응력에 미치는 영향에 관한 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Geun;Lee, Seong-Ho;Park, Chi-Yong;Lee, Seung-Geon;Park, Jai-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.56-63
    • /
    • 2011
  • his paper aimed to understand the residual stress in the dissimilar metal welds of nuclear power plant. Two kinds of residual stress were considered, which caused by welding and machining. Residual stress due to mechanical machining was measured by hole-drilling technique and x-ray diffraction method for the SA508 and F316L. Weld residual stress at dissimilar metal weld between SA508 and F316L was evaluated by FEA. Residual stress profiles were obtained for the inside surface and through thickness of welds. Machining effect was also analyzed by FEA. According to the residual stress measurement, it was observed that mechanical machining can generate tensile stress on the surface of the test material. However, FEA results showed that mechanical machining did not increase the tensile stress on the surface of weld region. Further study with more elaborate measurement and numerical analysis is required to identify the effect of machining on residual stress in the dissimilar metal weld region.

Frequency Tracking of Resonance Frequency Variation of L-C Circuits for Wireless Energy Transmission to Medical Devices in Human Organs

  • Gimm, Yoon-Myoung;Ju, Young-Jun;Lee, Yu-Ri;Lee, Dong-Yeol;Wang, Jong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.298-303
    • /
    • 2011
  • A capsular endoscope (CE) for inspection of the large intestine requires a motor for backward navigation against the autonomous travel in the intestine. This study proposes an HF power system for generating a magnetic field and for delivering wireless power to the internal or implanted medical devices. The magnetic field is generated by a wound coil (L) around a wooden frame, and the current is driven to the coil through a resonating capacitor (C). The characteristics of the resonance frequency shifting of the L-C series circuit are analyzed. A stable magnetic field intensity in the field coil is maintained by a specially designed frequency tracking system that automatically follows the L-C resonance frequency. Testing confirmed that the oscillation system tracks well the parameter changes of the electric components caused by the operating conditions or environmental variations.

Cell-balancing Algorithm for Paralleled Battery Cells using State-of-Charge Comparison Rule

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.156-158
    • /
    • 2018
  • The inconsistencies between paralleled battery cells are becoming more considerable issue in high capacity battery applications like electric vehicles. Due to differences in state-of-charge (SOC) and internal resistance within individual cells in parallel, charging or discharging current is not appropriately balanced to each cell in terms of SOC, which may shorten the lifetime or sometimes cause safety issues. In this paper, an intelligent cell-balancing algorithm is proposed to overcome the inconsistency issue especially for paralleled battery cells. In this scheme, SOC information collected in the sub-BMS module is sent to the main-BMS module, where the number of parallel cells to be connected to DC bus is continuously updated based on the suggested SOC comparison rule. To verify the method, operation of the algorithm on 4 paralleled battery cells are simulated on Matlab/Simulink. The simulation result shows that the SOCs of paralleled cells are evenly redistributed. It is expected that the proposed algorithm provides high reliable and prolong the life cycle and working capacity of the battery pack.

  • PDF

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6호기용 공기정화기에 대한 내진검증)

  • Lee, Joon-Keun;Kim, Jin-Young;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.404-409
    • /
    • 2001
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed is condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

  • PDF