• Title/Summary/Keyword: Electric propulsion

Search Result 433, Processing Time 0.026 seconds

A Study on Application of Electric Propulsion System using AFE Rectifier for Small Coastal Vessels

  • Jeon, Hyeonmin;Kim, Seongwan;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.373-380
    • /
    • 2018
  • The small coastal vessel registered in Korea, small coastal vessels with a gross tonnage of 10 tons or less account for 94.6 % and among them, aged vessels over 16 years age indicate 40.6 %. In order to reduce GHG emissions from small coast vessels, discussions are underway to replace aging ships' propulsion units with eco - friendly propulsion facilities, and the electric propulsion ship is emerging as one of the measures. The electric propulsion system using the DFE rectifier, which was applied in the conventional large commercial vessel, was effective in reducing the harmonics and improving the DC output voltage of the DC link stage, but it occupied a large volume and caused an increase in the overall system price. Therefore, in this paper, we propose an electric propulsion system using AFE rectifier with a small volume of system that can be applied to a small coastal vessel. In order to analyze the effectiveness of the overall system, the load profile was applied to obtain accurate and rapid speed tracking performance of the propulsion motor affected by the speed load. In addition, the power factor and total harmonic distortion factor of the voltage and current on the improved power output side are derived through simulation.

A Study on the Certification Standard Analysis and Safety Assurance Method for Electric Propulsion System of the Urban eVTOL Aircraft (도심용 eVTOL 항공기 전기추진시스템 기준 분석 및 안전성 확보 방안에 관한 연구)

  • Kim, Juyoung;Yoo, Minyoung;Gwon, Hyukrok;Gil, Ginam;Gong, Byeongho;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.42-51
    • /
    • 2022
  • An eVTOL aircraft, which is required to operate with low pollution/low noise in urban environments, mostly use battery-powered electric propulsion systems as power sources, not traditional propulsion systems such as reciprocating or turbine engines. Accordingly, certification preparation for the electric propulsion system and securing the safety of the electric propulsion system, are important issues. In the U.S., special technical standards equivalent to FAR Part 33 were issued to certify electric engines, and in Europe, various special conditions were established to certify electric propulsion systems. Thus, in Korea, the technical standards for the electric propulsion system for eVTOL aircraft must also be prepared in line with the U.S. and Europe. In this paper, SC E-19, the technical standard of the electric/hybrid propulsion system (EHPS) in special conditions, was analyzed. Additionally, securing the safety of the electric propulsion system of the aircraft are proposed, through the collaboration of SC E-19 technical standards with the existing aircraft safety evaluation procedure ARP 4761. Finally, through a case study of the Ehang 184 electric propulsion system, it has been confirmed that the proposed safety assurance method is applicable at the aircraft level.

A Study on Power System for the EAV2 Electric Propulsion Vehicle (EAV2 전기추진비행기용 동력시스템에 관한 연구)

  • Lee, Bo-Hwa;Park, Poo-Min;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.816-819
    • /
    • 2010
  • A study on the required propulsion powers at the EAV2 electric propulsion vehicle using power system such as solar cell, fuel cell and secondary cell is conducted, through which the scenario about available supply power is discussed at the optimum propulsion system weight on the specified flight envelope. In the result, it is noticed that propulsion system weight is 7.06kg and fuelcell 500W and secondary cell 100W are available to flight for glider-type electric vehicle with 6m length, 0.35m width.

  • PDF

Design and Analysis of Load Shedding for the Electric Propulsion System (전기추진시스템의 부하저감 설계 및 해석)

  • Kim, Kyung-Hwa;Kim, Dae-Heon;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.971-977
    • /
    • 2015
  • The electric propulsion system requires more reliability and safety than the conventional propulsion system because any sudden changes of electric system would bring tremendous effects on the ship's safety and propulsion. So it is very important to consider the potential transient effects. This paper discusses one of the worst electric accident. That is, one or two of generators are out of service in normal seagoing condition. And the appropriate measures are simulated in order to prevent the frequency decline that can bring the other generator's tripping. In addition, the relation between the transient effects and the major factors(inertia of generator/motors, governor's drooping characteristic and response speed) are also identified using the ETAP software.

Analysis & Design of Cooling System for Electric Propulsion System (전기 추진 시스템의 냉각시스템에 관한 분석 및 설계)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Kwak, Jun-Ho;Lee, Ji-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.596-602
    • /
    • 2008
  • The cooling system is one of the most concerning factor for the reliability of the electric propulsion ship. Generally, a drive system operation in higher temperature decreases the device's reliability and power efficiency. The management of power loss and temperature of switching devices is indispensable for the reliability of the power electric system. In this paper, the switching devices are molded by IGBT, and the propulsion system is consisted of MIIR(Motor with Inverter Internal to Rotor). The system composition interacts with each other to calculate the loss and temperature of device. The calculation result is used for modeling and designing of the control and monitoring system for the electric propulsion system.

A Study on the Adoption of Power Take Off Operation Mode and Fuel-Saving Effect in the Hybrid Electric Propulsion System for a Warship (전투함 하이브리드 전기추진 시스템의 PTO 운전모드 적용 및 연료절감 효과 연구)

  • Kim, So-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2019
  • Hybrid electric propulsion systems (H-EPSs) are an intermediate step for integrated full electric propulsion warships. H-EPSs are a dynamic combination of mechanical and electrical propulsion systems to achieve the required mission performances. The system modes could adapt to meet the requirement of the various operation conditions of a warship. This paper presents a configuration and operating modes of H-EPSs considering the operation conditions of a destroyer class warship. The system has three propulsion modes, namely, motoring mode, generating mode [power take off (PTO) mode], and mechanical mode. The PTO mode requires a careful fuel efficiency analysis because the fuel consumption rate of propulsion engines may be low compared with the generator's engines depending on the loading power. Therefore, the calculation of fuel consumption according to the operating modes is performed in this study. Although the economics of the PTO mode depends on system cases, it has an advantage in that it ensures the reliability of electric power in case of blackout or minimum generator operation.

Introduction For Dual Fuel Electric Propulsion LNGC (DUAL-FUEL ELECTRIC PROPULSION LNG 선 소개)

  • Kim, Jin-Mo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • 최근 LNG 연료 시장의 호황에 힘입어 LNG선들이 점차 대형화 추세에 있고, LNG선의 추진 기판 또한 경제성, 환경 영향 등의 주어진 요구 환경에 따라 다양화 되고 있다. 기존의 Steam Turbine Propulsion 외에 Conventional 2-stroke Diesel Engine 및 Dual-fuel 4-stroke Diesel Engine 이 LNG선의 주 기관으로 각광받고 있다. 이에 따라 Dual fuel electric propulsion LNGC의 기본 개념, 작동 원리 주요 보조 기기, 타 추진 시스템과의 비교 능에 대해 고찰하였다.

  • PDF

Analysis & Design of Cooling System for Electric Propulsion System (전기추진시스템의 냉각시스템에 관한 분석 및 설계)

  • Yu, Byong-Rang;Oh, Jin-Seok;Jin, Sun-Ho;Lim, Myoung-Kyu;Kwak, Jun-Ho;Jo, Kwan-Jun;Kim, Jang-Mok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1113-1119
    • /
    • 2005
  • The power electric system is one of the most concerning factor for the reliability of the electric propulsion ship. operation in higher temperature decreases the device's reliability and power efficiency. the management of power loss and temperature of switching devices is indispensable for the reliability fo the power electric system. In this paper, IGBT chip of the switching devices is modeled and MIIR(Motor with Inverter Internal to Rotor)type of the propulsion motors is used. these parts interact with each other to calculate the loss and temperature of device. calculated Results is modeled and designed of the control and monitoring system for the electric propulsion system.

  • PDF

Harmonic Distortion Control for Electric Propulsion (전기 추진선을 위한 고조파 제어 사례 연구)

  • Kim, Ju-Wan;Lee, Choong-Yeol;Seo, Kun-Kyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.38-45
    • /
    • 2008
  • The application of the electric propulsion system to the vessels has recently become common due to the latest technology for controlling the electric motors with variable speed. However it has been found that harmonic distortion exists in the electric propulsion system, which consists of an electric motor, a converter and an inverter, and this harmonic distortion has a harmful effect on the system. In this paper, the definition of the harmonic distortion and problems caused by the harmonic distortion in the electric propulsion of the vessels are introduced and the practical solutions for the problems are investigated.

  • PDF

A Electric Power Source Modeling and Simulation for Electric Propulsion Systems of a Fuel Cell Powered Small UAV (소형 연료전지 무인기의 전기추진시스템용 전력원 모델링 및 시뮬레이션)

  • Lee, Bo-Hwa;Park, Poo-Min;Kim, Chun-Taek;Kim, Sung-Yug;Yang, Soo-Seok;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.959-965
    • /
    • 2011
  • A modeling and power simulation of a small UAV's electric propulsion systems is described. Each power source is modeled and simulated in Matlab/Simulink and it is compared flight test data during 4 hr 30 min with simulation results about 200 W electric propulsion system using fuel cell and battery as a main power sources. In result, it is properly simulated performance and dynamic characteristic of each electric power source. Through this, it is revealed that the simulation is available as a means of predicting power characteristic variation for electric propulsion systems of different class.