• Title/Summary/Keyword: Electric power transmission

Search Result 1,073, Processing Time 0.028 seconds

Dynamic Operational Strategies of UPFC in the KEPCO Transmission System

  • Chang, B.H.;Choo, J.B.;Lima, Leonardo T.G.;Feltes, James W.
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.168-176
    • /
    • 2003
  • The Korea Electric Power Corporation (KEPCO) has installed an 80 MY A Unified Power Flow Controller (UPFC) at its 154㎸ 'Kang-Jin Substation in South Korea. The device, manufactured by Siemens & Hyusung, has been operational since October 2002. The Korea Electric Power Research Institute (KEPRI), a division of KEPCO was tasked to study operational strategies that could be employed for the UPFC and surrounding reactive support devices concerning problems of low voltages and overloads in the Mokpo & Gwangju areas. Particular apprehension surrounded the possibility of delay in the installation of a new 345㎸ transmission line from 2005 to beyond 2010. The studies were to specifically determine whether these problems could be eliminated by application of a UPFC. The analysis included determining the UPFC operating point under various conditions, investigations of the coordination between the UPFC and a HYDC line terminating in this area, and the design of a supplementary damping controller for the UFPC. This paper summarizes the results of those studies, demonstrating the dynamic characteristics of the operation of this UPFC operation in the Korean power system.

A new geophysical exploration method based on electrical resistivity to detect underground utility lines and geological anomalies: Theory and field demonstrations

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Although ground investigation had carried out prior to the construction, many problems have arisen during the civil-engineering works because of the presence of the unexpected underground utility lines or anomalies. In this study, a new geophysical exploration method was developed to solve those problems by improving and supplementing the existing methods. This new method was based on the difference of electrical resistance values between anomalies and surrounding ground medium. A theoretical expression was suggested to define the characteristics of the anomalies such as location, size and direction, by applying the electric field analysis. An inverse analysis algorithm was also developed to solve the theoretical expression using the measured electrical resistance values which were generated by the voltage flowing the subsurface medium. To verify the developed method, field applications were conducted at the sites under construction or planned. From the results of the field tests, it was found that not only the new method was more predictive than the existing methods, but its results were good agreed with the measured ones. Therefore, it is expected that application of the new exploration method reduces the unexpected accidents caused by the underground uncertainties during the underground construction works.

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.

The Study on Countermeasures of Electromagnetic Force by Three Phase Short-Circuit Test of Cable (케이블 삼상단락 실증시험을 통한 전자력 대책방안 검토)

  • Hong, Dong-Suk;Kim, Hae-Jun;Park, Sung-Min;Chang, Woo-Suk;Park, Heong-Suk;Jang, Tae-In;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.363_364
    • /
    • 2009
  • Even though underground transmission cable is an essential transmission method to supply stable power for downtown and population center, interaction of electromagnetic force from fault current is very large comparing to overhead transmission line due to restricted installation space such as tunnel, etc. and close consideration is required for it. This paper presents countermeasures to reduce and release the effect of electromagnetic force with rope binding and installation of spacer and describes its efficacy through three phase short-circuit test, which will be utilized as basic materials for improvement and development of cleat, hanger, etc. to reduce and release effect of electromagnetic force in the future.

  • PDF

Aerodynamic Characteristics and Galloping Possibility of Ice Accreted Transmission Conductors by Wind Tunnel Tests (풍동실험을 통한 착빙 가공송전선의 공력 특성 측정 및 갤러핑 발생 분석)

  • Lee, Dooyoung;Goo, Jaeryang;Park, Sooman;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • In this paper, the wind tunnel test for the measurement of aerodynamic characteristics of transmission conductors with asymmetric sections is described. A single conductor model and bundled conductor models with ice accreted shapes are tested both in steady and turbulent flow, and the aerodynamic coefficients are acquired. Transmission conductor galloping is a kind of wind-induced vibration which is characterized by primarily vertical oscillation with a very low frequency and a high amplitude. It is well known that transmission conductor galloping is generally caused by moderately strong, steady winds when a transmission conductor has an asymmetric cross-section shaped by accreted ice. Galloping should be considered from the design stage of overhead lines because it can cause severe wear and fatigue damage to attachments as well as transmission conductors. It is reported that there have been normally 20 events of galloping per year in Korea, which may be followed by serious consequences in the electric power system. Therefore, this research is performed to measure aerodynamic characteristics of ice accreted transmission conductors to understand and control transmission conductor galloping so that it would help to prevent unexpected failures and reduce the maintenance costs caused by galloping.

A Study on a Criterion of Transmission Planning in a Competitive Electricity Market (경쟁적 전력시장에서 혼잡을 고려한 송전설비계획 기준설정에 관한 연구)

  • Kim Jong-Man;Han Suck-Man;Kim B.H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.358-365
    • /
    • 2005
  • Transmission networks play an important role which transfer generated electric power to a consumer in power system operation. In a competitive environment of electric power industry, developing the technological criterions and methodologies on transmission planning is becoming new challenge to transmission system planner. The use of a locational signal and the provision of a indicative plan to control the transmission investment reasonably is very important in the viewpoint of a regulator. The main target of this study is to develop a systematic criterion of transmission expansion planning. And system congestion cost is considered. The proposed methodology was demonstrated with several case studies.

POWER TRANSMISSION CHARACTERISTICS OF FEASIBLE NON-CONTACT PICK-UP COIL COUPLED TO HIGH-FREQUENCY POWER SUPPLY SYSTEM

  • Kuroda, Mitsuyoshi;Tsuda, Masanori;Okuno, Atsushi;Gamage, Laknath;Mutsuo, Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.447-451
    • /
    • 1998
  • This paper conducts a study on a non-contact power delivering system using high-frequency inverter with the purpose of discussing the non-contact electric power transmission characteristics through circuit analysis, magnetic analysis and feasible experiments. In this power delivering scheme, various properties pertaining to the non-contact transformer of the power system such as the design, the core depth, core material, primary side frequency etc. are considered with a view of improving the non-contact power dilivery to the secondary.

  • PDF

Decreasing Technique of the Electric-field Intensity on Transmission Conductor Surface using the Hybrid Conductor Bundle (2종소도체 배열방식을 적용한 송전도체 표면전계강도 저감기법)

  • Lee, Dong-Il;Sin, Gu-Yong;Kim, Jeong-Bu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.542-549
    • /
    • 1999
  • Corona discharges form at the surface of a transmission line conductor when the electric-field intensity on the conductor surface exceeds the breakdown strength of air. In order to decrease the electric-field intensity on the conductor surface, a new 6 conductor bundle has been studied. This bundle, hybrid conductor bundle, consists of using a larger subconductor at the bottom two conductor positions in the 6-conductor bundles of each phase of the line. The electric field on these two larger subconductors is reduced which in turn reduces the corona noise. It is shown that this is a better solution for decreasing the electric-field intensity than ether the conventional bundle or the asymmetric bundle proposed by EPRI.

  • PDF

Partial Discharge Electromagnetic Wave Penetration Characteristics Throughout Transformer Winding (전자기파 부분방전 신호의 권선 투과 특성)

  • Ju, Hyung-Jun;Han, Ki-Son;Yoon, Jin-Yul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.809-813
    • /
    • 2010
  • Frequency domain measurement of propagation loss for ultra high frequency (UHF) partial discharge in the winding of power transformer using a spectrum analyzer and pulse generator is presented. We compared the performance of the method using a network analyzer with and without a winding. Using a network analyzer simplifies the measurement and offers better dynamic range and frequency range. It also provides precise propagation loss within the winding in frequency domain at UHF range. We applied this method to measure UHF propagation loss of transformer mock-up, modeled 154 kV 20 MVA power in KEPCO substation.

The Study on the Efficient HVDC Capacity Considering Extremely Low Probability of 765kV Double Circuit Transmission Lines Trip

  • Moon, Bong-Soo;Ko, Boyung;Choi, Jin-San
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1046-1052
    • /
    • 2017
  • The load on the power grid of South Korea is expected to grow continuously until the late 2020s, and it is necessary to increase the transfer capacity from the Eastern grid to the Seoul-Gyeonggi region by reinforcing the transmission network for the electric power system to remain stable. To this end, the grid reinforcement by two bipole LCC HVDC transmission systems have been considered on account of the public acceptability and high growth of the fault current level, even though an additional 765kV system construction is more economical. Since the probability of the existing 765kV double circuit transmission line trip is extremely low, a dynamic simulation study was carried out to estimate the efficient HVDC capacity able to stabilize the transient stability by utilizing the HVDC overload capability. This paper suggests the application plan to reduce the HVDC construction capacity with ensuring the transient stability during the 765kV line trip.