• Title/Summary/Keyword: Electric power facilities

Search Result 514, Processing Time 0.025 seconds

Improvement Method of Supplying Reliability on the Electric Railway Power Distribution System (전기철도 고압배전시스템의 공급신뢰도 향상 방안 연구)

  • Kim Young-Sun;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.682-687
    • /
    • 2005
  • High quality power supplying of power distribution system in electric railway system is the important function. Power feeding system is complicated witch is compose with distribution line, circuit break, protection facilities and so on. Among this components, role of substation is most important for elevation of reliability in electric power system. Therefore, the enhanced reliability considering the preventive inspection, repair work, replacement is necessary. In this study, a proposed the enhanced reliability method through a calculation of fault probability in power feeding system.

  • PDF

Development of Operation and Control Technology of Energy Storage System for Frequency Regulation and Operation by Grid Connected Automatic Control (주파수조정용 에너지저장장치 운전제어 기술의 개발과 계통연계 자동제어 운전)

  • Lim, Geon-Pyo;Choi, Yo-Han;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Grid-connected, large-capacity energy storage systems (ESS) can be used for peak load supply, frequency regulation, and renewable energy output smoothing. In order to confirm the capability of battery ESS to provide such services, 4MW/ 8MWh battery ESS demonstration facility was built in the Jocheon substation on Jeju Island. The frequency regulation technology developed for the Jocheon demonstration facility then became the basis for the 28MW and 24MW frequency regulation ESS facilities installed in 2014 at the Seo-Anseong and Shin-Yongin substations, respectively. The operation control systems at these two facilities were continuously improved, and their successful commercialization led to the construction of additional ESS facilities all over Korea in 2015. In seven (7) locations nationwide (e.g., Shin-Gimje and Shin-Gyeryeong), a total of 184 MW of ESS had been commercialized in 2016. The trial run for the new ESS facilities had been completed between April and May in 2016. In this paper, results of the trial run from each of the ESS facilities are presented. The results obtained from the Seo-Anseong and Shin-Yongin substations during a transient event by a nuclear power plant trip are also presented in this paper. The results show that the frequency regulation battery ESS facilities were able to quickly respond to the transient event and trial run of ESS is necessary before it is commercialized.

Analysis of Economic Replacement Cycle of Power Transformer Based on LCC Considering Maintenance Effect

  • Park, Seung-Hwa;Jang, Kyeong-Wook;Kweon, Dong-Jin;Shon, Jin-Geun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1631-1637
    • /
    • 2018
  • Electric utilities has been considered the necessity to introduce asset management of electric power facilities in order to reduce maintenance cost of existing facilities and to maximize profit. This paper aims to provide data that can helpful to make profitable decision in terms of power transformers which have a significant part in the power system. Therefore, this study is modeling input cost for power transformer during its entire life and also the life cycle cost (LCC) technique is applied. In particular, the variation of transformer state related with maintenance and the variation of the EUAC curve based on cost and effect of maintenance is examined. In this study, the trend of the equivalent uniform annual cost (EUAC) according to maintenance cycle and cost of equipment is analyzed. In line with that, sensitivity analysis influenced by the changes of other cost factors was performed.

Data Acquisition and Statistical Processing of Insulation Resistance for High-Power Cables in Operation (운전 중 고전력 케이블의 절연저항 데이터의 취득과 통계적 처리 방법)

  • Park, Sung-Hee;Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.181-186
    • /
    • 2018
  • With progress in industrialization, facilities for generating, delivering, and receiving high levels of electric power are in great demand. The scale of electric power equipment is increasing in both size and complexity. This has contributed to the development of our modern, high-tech and information-based society. However, if the generation of electric power is suspended due to unexpected accidents at power facilities or power stations, a range of equipment the operations of which are dependent on electric power can be damaged, causing substantial socioeconomic losses in an industrial society. A great deal of time and money would be expended to repair damaged facilities at a power station, causing enormous economic loss. In order to detect the deterioration processes of power cables, and to prevent the destruction of power cables, the operation status of power cables should be monitored on a regular basis. We studied the method in order to improve accuracy and reliability for diagnosising the junction where accident occurs frequently. We present the method of data acquisition and statistical processing.

A Study on the Optimal Grounding Design using Pattern Search Method for Electric Power Facilities (전력사용 시설물의 Pattern Search 법을 이용한 최적 접지 설계에 관한 연구)

  • 김경철;최병숙
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • Electric power facilities must have effective grounding to provide means to carry electric current into the earth under fault conditions and to prevent damage of equipment, ignition, and electrocution of personnel. This paper resent an algorithm called the Pattern Search method for the optimal parameters selection of the grounding system Simulation results using these parameters obtained from the PS method verify that the grounding systems are adequately designed.

Implementation of Highly Integrated Total Energy System (전력수급 종합시스템 현장적용)

  • Park, Si-Woo;Yoon, Yong-Beum;Nam, Jae-Hyun;Choo, Jin-Boo;Choi, Bong-Soo;Lee, Hyo-Sang;Kim, Joon-Hwan;Lyu, Sung-Ho;Han, Seung-Goo;Baek, Woong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1525-1525
    • /
    • 1999
  • The main purpose of HITES(Highly Integrated Total Energy System) is to build and develop an integrated energy system for power system operational planning and analysis which consists of load forecast, economic generation schedule, stability analysis and relational database system. The HITES can be utilized to supply a stable electric power and operate KEPCO's power system facilities economically. This system was put into operation in 1999. This paper describes the main feature of the HITES, main functions, numerical methods adopted in this system and network configuration.

  • PDF

Guideline on Security Measures and Implementation of Power System Utilizing AI Technology (인공지능을 적용한 전력 시스템을 위한 보안 가이드라인)

  • Choi, Inji;Jang, Minhae;Choi, Moonsuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

Seismic Analysis of Substation Facilities Considering Interaction Effect (변전설비 간 상호작용을 고려한 지진응답해석)

  • Jang, Jung-Bum;Hwang, Kyeong-Min;Suh, Yong-Pyo;Lee, Guen-Jig
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.605-612
    • /
    • 2006
  • 765kV substation facilities are most important as electric power supply network in the 21 century. So, in order to prevent interruption of electric power supply under earthquake, 765kV substation facilities have to secure the safety against the earthquake. However, even though each substation facility is interconnected mutually, seismic interaction effect doesn't be considered in the initial design. Therefore, seismic capacity evaluation of 765kV substation facilities is carried out considering the seismic interaction effect on a basis of seismic design criteria for Korean transmission and substation facilities.

  • PDF