• Title/Summary/Keyword: Electric nerve stimulator

Search Result 9, Processing Time 0.022 seconds

Development of Programmable Nerve Stimulator ( I ) - Implementation of the Nerve Stimuli Waveform Generator using the Microprocessor - (프로그램 가능한 신경 자극기 개발 ( I ) - 마이크로프로세서를 이용한 신경자극 파형 발생기 구현 -)

  • Kim, K.W.;Eum, S.H.;Lee, S.Y.;Jang, Y.H.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.260-265
    • /
    • 1996
  • The purpose of this study was to implemented a general purpose programmable nerve stimulator system as a research tool for studying psychophysiological performance associated with various stimulation waveform. This system is composed of hardware and software, the former are the personal computer(180586) and control unit(one-chip microprocessor, D/A converter, digital output), the latter are programmed in VISUAL BASIC and ASSEMBLY Which are programmed for the programmable nerve stimuli pattern editor and communication interface, waveform preprocessing, and stimuli generator. The control unit which is entrolled by the personal computer is capable of delivering the programmable nerve stimuli waveform. This system has research potential for determining the effect of various neuromuscular blockade in alternated physiological stat is.

  • PDF

Development and Estimation of a Wireless Controlled Implantable Electric-stimulator for the Blood Pressure Regulation (혈압조절을 위한 모선 제어되는 체내 이식형 전기 자극기의 개발 및 체외 성능 평가)

  • Kim, Yoo-Seok;Park, Seong-Min;Shim, Eun-Bo;Choi, Seong-Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.395-400
    • /
    • 2010
  • Hypertension is the chronic disease that the 16% of total population are suffering, and it needs to be studied to find alternative treatment because of the tolerance and side effect of medications that may bother some patients. in this paper, we verified practicality of implantable electrical stimulator that can readily change stimulus magnitude and frequency. And this device is possible to stimulate baroreflex or parasympathetic nerve. Therefore we performed in vitro tests and animal experiment for device's operating conditions. This device consist of implantable electrical stimulator and extracorporeal control/monitoring system. Stimulator was designed to make 1Hz~100Hz pulses and it can change continuous or periodic pulse train type. And this device can control stimulator's function and monitor stimulator's status and patients' blood pressure at exterior of body using ZigBee module as wireless telecommunication. We verified that stimulator have error rate under 5% at 50mm depth of organs and, stimulator makes high-efficiency energy with closer position of two electrodes. Also we can confirm the performance of device that decreasing blood pressure and heart rate of a rat by electrical stimulation.

Effect of Vagus Nerve Electrical Stimulation on Respiratory Muscle Activity and Lung Capacity during Deep Breathing (Case Study) (깊은호흡 시 미주신경 전기자극이 호흡근 활성과 호흡능력에 미치는 효과(사례 연구))

  • Moon, Hyunju
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.181-187
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the activity of respiratory muscle and lung capacity during deep breathing with electrical stimulation of the vagus nerve. Methods: This study was conducted on 30 healthy adults in their 20s. Subjects were randomly performed to deep breathing or deep breathing with vagus nerve electrical stimulation. All subjects' diaphragm and internal oblique muscle activity were measured during deep breathing by electromyography, and lung capacity was measured by spirometry immediately after beep breathing. In the vagus nerve stimulation method, the surface electrode was cut into the left ear and then electrically stimulated using a needle electric stimulator. Results: The activity of diaphragm was significantly increased in deep breathing with vagus nerve electrical stimulation than in deep breathing. However, lung capacity did not show any significant difference according to the condition. Conclusion: Vagus nerve electrical stimulation could induce diaphragm activity more than deep breathing alone. Deep breathing with vagus nerve electrical stimulation may enhance the activity of the respiratory muscles and is expected to be an effective treatment for the elderly or COPD patients with poor breathing ability.

Measurement of Magnetic Flux and Induced Current in Magnetic Stimulation for Urinary Incontinence Treatment (요실금 치료용 자기 자극기의 자속밀도 및 유도전류 측정)

  • Han, Byung-Hee;Choi, Kyung-Moo;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.318-326
    • /
    • 2009
  • A simple method for measuring magnetic flux and induced current in magnetic nerve stimulation for urinary incontinence treatment is proposed. Unlike electric nerve stimulation, direct measurement of the induced current in magnetic nerve stimulation is impossible. Since induced currents stimulate nerves or muscles in magnetic nerve stimulation, measuring induced current is very important in validating stimulation efficacy and securing safety. The magnetic flux measuring system is composed of 6 layers with pick-up coils of 7 by 7 in each layer, and the induced current measuring system is composed of 6 layers with 7 concentric circular coils in each layer. The proposed method can be used in the design or performance test of a magnetic nerve stimulator for many clinical applications such as urinary incontinence treatment, activation of peripheral nerves, and transcranial magnetic stimulation.

CLINICAL STUDY OF FACIAL NERVE INJURY AFTER TMJ SURGERY (악관절 수술후 안면신경 손상에 대한 임상적 연구)

  • Kim, Hyung-Gon;Park, Kwang-Ho;Lee, Eui-Wung;Kim, Joon-Bae;Joo, Jae-Dong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 1994
  • Authors have studied retrospectively the facial nerve injury after TMJ surgery through the preauricular approach routine. The study material used was 4 patients of all 113 patients who were diagnosed as internal derangement and have been operated from March 1989 to February 1991 in Youngdong severance hospital, and were induced postoperatived facial nerve injury. The patient group who had the postoperative injured facial nerve was recognized degree of injury using the diagnostic method, Electromyography(EMG) and Nerve conduction test(NCT) which are used widely at present and was treated as conservative care and we identified the recovery time as the same method. The results as follows : 1. The meticulous care and precious surgical technique are needed in both operation and postoperation. During the TMJ surgery, the excessive retraction of the flap and frequent use of nerve stimulator and electric surgical knife should be avoided as possible and postoperative hematoma and swelling should be minimized. 2. The 4 patients were experienced with the postoperative facial nerve injury of all 133 patients who had been operated the TMJ surgery through the routine preauricular approach on our hospital. And the incidence of postoperative facial nerve injury happened was about 0.3% and its incidence was relatively low comparing with any other previous reports. 3. EMG and NCT were considered as useful methods which can diagnose the nerve injury objectively and identified the effect of treatment and recovery time. 4. The faical nerve-injured patients who were induced postoperatively after TMJ surgery, were diagnosed as second-degree nere injury through the EMG and NCT. And the patient group was treated well as conservative physical therapy for about 2 to 4 months.

  • PDF

The Effect of EA and TENS on GAP-43 Expression in Spinal Cord after Rat Sciatic Nerve Crush Injury (전침자극과 경피신경전기자극이 흰쥐 좌골신경 압좌손상 후 척수내 GAP-43 발현에 미치는 영향)

  • Lee, Hyun-Min;Park, Eun-Se;Kim, Min-Hee;Kim, Souk-Boum;Kim, Dong-Hyun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • Purpose: The purpose of this study was to identify the effect of electroacupuncture(EA) and transcutaneous electric nerve stimulation(TENS) after sciatic nerve crush injury in rats. Methods: The EA for experimental group I (Exp I, n=15) and TENS for experimental group II (Exp II, n=15) was applied from post-injury day(PD) 1 to PD 14 after sciatic nerve injury using low frequency stimulator that gave electrical stimulation(15min/60Hz). In order observe the effect of EA and TENS, this study examined GAP-43 expression in rat lumbar spinal cord at the PD 1, PD 7 and PD 14. In addition, the stride length(SL) and toe out angle(TOA) were measured at the PD 7 and PD 4. Results; Exp I and Exp II had higher GAP-43 immunoreactivity than control group(PD 1, 7, 14). The SL of Exp I and Exp II were significantly higher than control group(PD 7, 14). The TOA of Exp I and Exp II were significantly lower than control group(PD 7, 14). Conclusion: EA and TENS application increased motor nerve recovery and expression of GAP-43 immunoreactivity after sciatic nerve crush injury. Therefore effect of TENS and EA had similar effect on nerve regeneration and functional recovery.

  • PDF

Development of Wireless Neuro-Modulation System for Stroke Recovery Using ZigBee Technology (ZigBee를 이용한 뇌졸중 치료용 무선 전기 자극기 개발)

  • Kim, G.H.;Ryu, M.H.;Shin, Y.I.;Kim, H.I.;Kim, N.G.;Yang, Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2007
  • Stroke is the second most significant disease leading to death in Korea. The conventional therapeutic approach is mainly based on physical training, however, it usually provides the limited degree of recovery of the normal brain function. The electric stimulation therapy is a novel and candidate approach with high potential for stroke recovery. The feasibility was validated by preliminary rat experiments in which the motor function was recovered up to 80% of the normal performance level. It is thought to improve the neural plasticity of the nerve tissues around the diseased area in the stroked brain. However, there are not so much research achievements in the electric stimulation for stroke recovery as for the Parkinson's disease or Epilepsy. This study aims at the developments of a wireless variable pulse generator using ZigBee communication for future implantation into human brain. ZigBee is widely used in wireless personal area network (WPAN) and home network applications due to its low power consumption and simplicity. The developed wireless pulse generator controlled by ZigBee can generate various electric stimulations without any distortion. The electric stimulation includes monophasic and biphasic pulse with the variation of shape parameters, which can affect the level of recovery. The developed system can be used for the telerehabilitation of stroke patient by remote control of brain stimulation via ZigBee and internet. Furthermore, the ZigBee connection used in this study provides the potential neural signal transmission method for the Brain-Machine Interface (BMI).

Development of an Electric Pulp Tester with Constant Current Source (정 전류원을 이용한 치수 검사기의 개발)

  • 김재성;남기창;김수찬;이승종;김덕원
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.61-68
    • /
    • 2004
  • Electric stimulation of teeth has been used for assessing pulp vitality. The principle is based upon the assumption that a subject feels the pain produced by electrical current stimulation of intradental nerve. Because of very high and wide range of impedance of the enamel, it is very difficult to determine stimulation levels regardless of teeth status. Most pulp testers adopt voltage stimulation method and thus, their stimulating threshold levels significantly depend on each individual. Therefore, a constant current stimulator is necessary to minimize the effect of wide variation due to different enamel thickness. And it is also necessary to test teeth vitality with a wide current range regardless of tooth impedance. In this study, we constructed a burst-wave type pulp tester to reduce the pain using a current stabilizing circuit with the maximum current of 150 uA.