• Title/Summary/Keyword: Electric double layer capacitors (EDLC)

Search Result 33, Processing Time 0.032 seconds

Electrochemical Characterization of Electric Double Layer Capacitors Assembled with Pyrrolidinium-Based Ionic Liquid Electrolytes

  • Cho, Jinhyun;Shin, Won-Kyung;Kim, Dong-Won;Kim, Young Rae;Lee, Byung Jun;Kim, Sang-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.199-205
    • /
    • 2016
  • We present the electrochemical performance of electric double layer capacitors (EDLCs) assembled with pyrrolidinium (Pyr)-based ionic liquid electrolytes at 55 ℃. Cations with various alkyl chain lengths were employed in Pyr-based ionic liquids to investigate the effect of cation structure on the cycling stability of EDLCs. The EDLCs exhibited initial specific capacitances ranging from 122.4 to 131.6 F g−1 based on activated carbon material at 55 ℃. Cycling data and XPS results demonstrate that Pyr-based ionic liquid with longer alkyl chain is more effective for enhancing the cycling stability of EDLC by suppressing the reductive decomposition of pyrrolidinium cations during cycling at high temperatures.

Experimental Verification of Electric Vehicle Using Electric Double Layer Capacitor

  • Ikeda, Hidehiro;Ajishi, Hideki;Hanamoto, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-178
    • /
    • 2013
  • This paper discusses to conduct experimental verification of two types of micro electric vehicles (EV) in order to realize improvement in electric mileage and shorten a charging time of the battery. First, electric double layer capacitor (EDLC) systems to use as a secondary battery are proposed. The internal resistance of EDLC is small compared with a rechargeable battery, and it is suitable for momentary charge-discharge of EV. Next, control circuits of the capacitors to increase the regenerative electric power are utilized. Then, a novel method to charge a main battery of the EV is introduced. Finally, experimental results demonstrate the validity of the proposed method.

Studies of Electric Double Layer Capacitors Used For a Storage Battery of Dye Sensitized Solar Cell Energy

  • Kim Hee-Je;Jeon Jin-An;Sung Youl-Moon;Yun Mun-Soo;Choi Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.251-256
    • /
    • 2006
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell (DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results, the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on the central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

Studies of electric double layer capacitors used for a storage battery of dye sensitized solar cell energy (염료감응형 태양전지의 축전지로 사용되는 전기이중층콘덴서에 대한 연구)

  • Choi, Jin-Young;Lee, Im-Geun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.673-676
    • /
    • 2005
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell(DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results. the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

  • PDF

An Accelerated Degradation Test of Electric Double-Layer Capacitors (전기이중층커패시터의 가속열화시험)

  • Jung, Jae-Han;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.

Structure and EDLC Characteristics of Pitch-based Activated Carbons

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.627-627
    • /
    • 2009
  • In this work, the activated carbons (ACs) with high porosity were synthesized from pitch by KOH chemical activation. The structure and surface properties of ACs were characterized by means of elemental analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy(XPS). And, the influence of the KOH-to-pitch ratio on the porosity of the ACs was investigated using the nitrogen adsorption isotherms at 77 K and a scanning electron microscopy (SEM). As a result, pitch could be successfully converted into ACs with well-developed micro and mesopores. The specific surface areas and pore volumes were increased with an increase of the KOH-to-pitch ratio. Furthermore, it was found that the addition of KOH led to the transformation of the micropores to the meso- and macropores. In the application to electric double layer capacitors (EDLC), the pitch-based ACs showed a higher capacitance per weight and per volume, and an excellent electrochemical stability in the high voltage region.

  • PDF

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons

  • Ka, Bok-H.;Yoon, Song-Hun;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.252-256
    • /
    • 2007
  • A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as "pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.

Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector (구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성)

  • Jung, Dong-Won;Lee, Chang-Soo;Park, Soon;Oh, Eun-Souk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.