• Title/Summary/Keyword: Electric discharge phenomenon

Search Result 51, Processing Time 0.022 seconds

Plasma Density Measurement of the Hg-Ar(1Torr) by LIF Method (LIF를 이용한 Hg-Ar(1Torr)의 플라즈마 밀도 측정)

  • Lee Jong-Chan;Park Dae-Hee;Yang Jong-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.213-217
    • /
    • 2005
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely This highlights the importance of measuring density distribution in plasma electric discharge mechanism study The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorescent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1 {\to} 6^3P_2$ ) were larger than 404.8nm ($6^3S_1 {\to} 6^3P_1$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

Plasma Density Measurement of Hg-Ar by LIF Method (LIF를 이용한 Hg-Ar의 플라즈마 밀도 측정)

  • Choi, Yong-Sung;Hwang, Jong-Sun;Park, Kye-Choon;Song, Min-Jong;Kim, Hyeong-Gohn;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely. This highlights the importance of measuring density distribution in plasma electric discharge mechanism study. The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorcscent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1{\rightarrow}6^3P_2$) were larger than 404.8nm ($6^3S_1{\rightarrow}6^3P_2$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

  • PDF

Study on Analysis for Power Consumption and Charge/Discharge Effect with BESS in AC High-Speed Electric Railway System (교류 고속철도계통에서 BESS의 도입을 위한 전력소비 및 충·방전효과 분석에 관한 연구)

  • Jeon, Yong-Joo;Kang, Byoung-Wook;Chai, Hui-Seok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.20-27
    • /
    • 2014
  • The power consumption pattern of high-speed railway has rarely during night time. But, during service time, the power is consumed irregularly related to train operation. Especially certain unusual about 1-2 days of service time interval to indicate the power consumption is rapidly growing phenomenon, which causes the capacity of the power contract is the annual electricity bill to rise rapidly as the cause. Normally, amount of peak power consumption bill rate at railway substation is over 20% of total electrical bill. Therefore, high-speed railway substation is expected to be considerably larger savings by reducing the peak power of the default charge(demand power).

Coupled Oil-Structure Analysis for Piston Motion in Reciprocating Compressors (윤활-구조물 연계해석을 이용한 왕복동형 압축기의 피스톤 거동해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Ryu, Sung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.513-518
    • /
    • 2003
  • The piston slap phenomenon is one of the major noise source of reciprocating compressors used in household electric appliances. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, the dynamic behavior of suction and discharge valves are analytically calculated and the lubricant behavior between piston and cylinder are investigated using two-dimensional Reynolds equation. And the piston slap caused by the piston secondary motion is investigated by the finite element method.

  • PDF

A Study on Electric Characteristics of Plasma Electon Beam Produced by Cold Cathode. (냉음극을 이용한 plasma전자 beam의 전기적 입력특성 I)

  • 전춘생;박용관
    • 전기의세계
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 1978
  • It has been investigates that electric characteristics of plasma electron beam in N$_{2}$, H$_{2}$ and Ar gas jars under various gas pressures during electron beams are formed. The results are as follows: 1)Electron beam is formed in the region of positive resistance on the characteristic curve. This phenomenon is identical in N$_{2}$, H$_{2}$ and Ar gases. 2)But in Ar gas, electron beam is formed at relatively lower gas pressure than in H$_{2}$ and N$_{2}$. 3)In pure gas either N$_{2}$, H$_{2}$ and N$_{2}$ the lower the gas pressure, the higher the voltage drop for the same electron beam current. 4)The region in which electron beam is formed is limited at a given pressure. 5)Beyond the limit mentioned above, it becomes glow discharge state and the current increases radically. 6)At a given gas pressure, electron beam voltage, that is, electrical power input increases with gap length.

  • PDF

Characteristics of Nano-dispersed Powder by Electric Explosion of Conductors

  • Kwon, Young-Soon;Kim, Ji-Soon;Moon, Jin-Soo;Kim, Hwan-Tae;Ilyin, Alexander-P;Rhee, Chang-Kyu;Rim, Geun-Hie
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.430-435
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed. The preferential gas media during EEC is Ar+$H_2$. An increase in $e/e_s$ (in the range of values studied) leads to a reduction in the metal content. For reactive powders obtained with high metal content, it is necessary to separate the SFAP fractions, which settled on the negative electrode of the electric filter.

Development of Prediction of Electric Arc Risk using Object Dection Model (객체 탐지 모델을 활용한 전기 아크 위험성 예측 시스템 개발)

  • Lee, Gyu-bin;Kim, Seung-yeon;An, Donghyeok
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2020
  • Due to the high dependence on electric energy, electric fires make up a significant portion of fires in Korea. Electric arcs by short circuits or poor contact cause three of four electrical fires. An electric arc is a discharge phenomenon of electrical current between the insulators, which instantaneously produces high temperature. In order to reduce the fire due to electric arc, this study aims to predict the electric arc risk. We collected arc data from the arc detectors and converted into graphs based on temporal arc data. We used machine learning for training converted graph with different number of temporal arc data. To measure the performance of the learning model, we use the test data. In the results, when the number of temporal arc data was 20, the prediction rate was high as 86%.

Novel Estimation Technique for the State-of-Charge of the Lead-Acid Battery by using EKF Considering Diffusion and Hysteresis Phenomenon (확산 및 히스테리시스 현상을 고려한 확장칼만필터를 이용한 새로운 납축전지의 충전상태 추정방법)

  • Duong, Van-Huan;Tran, Ngoc-Tham;Park, Yong-Jin;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2014
  • State-of-charge (SOC) is one of the significant indicators to estimate the driving range of the electric vehicle and to control the alternator of the conventional engine vehicles as well. Therefore its precise estimation is crucial not only for utilizing the energy effectively but also preventing critical situations happening to the power train and lengthening the lifetime of the battery. However, lead-acid battery is time-variant, highly nonlinear, and the hysteresis phenomenon causes large errors in estimation SOC of the battery especially under the frequent discharge/charge. This paper proposes a novel estimation technique for the SOC of the Lead-Acid battery by using a well-known Extended Kalman Filter (EKF) and an electrical equivalent circuit model of the Lead-Acid battery considering diffusion and hysteresis characteristics. The diffusion is considered by the reconstruction of the open circuit voltage decay depending on the rest time and the hysteresis effect is modeled by calculating the normalized integration of the charge throughput during the partial cycle. The validity of the proposed algorithm is verified through the experiments.

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].

Experimental study on enhancement of drying efficiency of organic solvent using ionic wind (이온풍을 이용한 유기용매의 건조 효율 향상에 관한 실험적 연구)

  • Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • 'Ionic wind' is phenomenon induced by corona discharge which occurs when large electric potential is applied to electrodes with high curvature. The ionic wind has advantage that it could generate forced convective flow without any external energy like separate pump. In this study, 'pin-mesh' arrangement is utilized for experiments. First, optimization of configuration is conducted with local momentum of ionic wind behind the mesh. Empirical equation for prediction about velocity profile was derived using the measured results. Secondly, the enhancement of mass transfer rate of acetone with ionic wind was analyzed. Also, the drying efficiency using a fan which has same flow rate was compared with ionic wind for identification of additional chemical reaction. At last, the drying process of organic solvent was visualized with image processing. As a result, it was shown that the use of ionic wind could dry organic matter four times faster than the natural condition.