• Title/Summary/Keyword: Electric cooling fan

Search Result 49, Processing Time 0.035 seconds

Design of Heat Pump for Temperature Control of Sealed Electric Box (밀폐 형 전장 박스 온도 제어를 위한 히트 펌프 설계)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.110-114
    • /
    • 2020
  • In this paper, a heat pump using a Peltier device was developed for heat dissipation in a sealed electric box. The heat pump was designed with a cooling fin attached to both sides of the Peltier device, and a fan was mounted on the cooling fin on the hot side to increase the efficiency. The heat dissipation efficiency could be improved by directly connecting the electronic component having high heat to the cooling fin using a heat conducting wire. The fabricated heat pump was designed to operate only in the temperature range set by the temperature control system to improve the problem of high power consumption of the Peltier element.

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

Temperature Control of the Aluminum Plate with Pottier Module by PWM Current Control (PWM 전류제어와 펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • Pang Du-Yeol;Kwon Tae-Kyu;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.897-900
    • /
    • 2005
  • This paper presents temperature control of aluminum plate using Peltier module. As one of the thermoelectric effect, Peltier effect is heat pumping phenomena by electric energy. So if current is charged to Peltier module, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier module is used to control the temperature of small aluminum plate with heating and cooling ability of Peltier module with current control and fan On/OFF control. And current control of Peltier module was accomplished by PWM method. As a results of experiments, it takes about 125sec to control temperature of aluminium plate between $30^{\circ}C\;and\;70^{\circ}C$ and about 70sec between $40^{\circ}C\;and\;60^{\circ}C$, in ambient temperature $29^{\circ}C$ while operating cooling fan only while cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

  • PDF

Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition (고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.

Performance Evaluation and Comparison of Conventional 12/8 and Novel 6/5 Switched Reluctance Motors (기존 12/8 및 새로운 6/5 SRM의 성능분석 및 비교)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.517-518
    • /
    • 2016
  • In this paper, a novel 6/5 switched reluctance motor (SRM) with segmental rotor is proposed for vehicle cooling fan application. Unlike conventional SRMs, the proposed motor adopts hybrid stator poles and segmental rotor structures, thereby making the motor operate in short flux paths and parts of the flux paths magnetically isolated between the phases. Therefore, compared with conventional SRMs, the proposed structure could improve the output torque density and reduce the core loss, thereby improving the electric utilization of the motor. To verify the proposed structure, the performance of the proposed structure is evaluated. Meanwhile, a conventional 12/8 SRM which has been used for vehicle cooling fan application is also evaluated. Finally, the effectiveness of the proposed SRM is demonstrated by the simulation and experimental results.

  • PDF

Effects of Phase Change Material Floor Heating Systems using Direct Solar Gain on Cooling Load (직달일사를 이용한 잠열축열식 바닥난방 시스템이 냉방부하에 미치는 영향에 대한 검토)

  • Kim, Soo-Kyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • In this research, the effect of a heating system, which is powered by direct solar energy accumulated in phase change material (PCM) as heat storage material installed on the floor surface, on the cooling load was studied. Cooling load of a test building designed for this research was measured with fan coil unit and factors affecting it were also estimated. Experiments were performed with and without PCM installed on the building floor to understand the effect of the PCM on the cooling load. Additionally, to confirm the experiments results, the prediction calculation formula by average outside temperature and integrated solar radiation was composed using multivariate regression model. The results suggested that the heating system with PCM on the floor surface has the potential to shift electric power peak by radiating heat, stored during the daytime in it, at night, not increasing the total cooling load much.

Thermo-Electric Generator System(TEGS) For Use Methanol Heat Source Consideration (메탄올 열원을 이용한 열전발전장치(TEGS)에 대한 고찰)

  • Cheang, Eui-Heang;Park, Sang-Jin;Jin, Jong-Soo;Moon, Chace-Joo;Chang, Young-Hak
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • This paper treats TEGS(Thermo-Electric Generation System) by using two different metals which have N and P types of thermo-electric characteristics respectively. Heat source is the thermal energy from the oxidative reaction of methanol and catalyst. Heat sink is an air cooling system (fan and heat sink). 4 TEMS of $40{\times}40mm$ of TEGS with 500ml methanol produce the electric power of maximum 6W and average 5W for 9 hours.

  • PDF

Cooling Characteristic Analysis of Transformer's Radiator (변압기 냉각 특성 해석)

  • Kim, Hyun-Jae;Yang, Si-Won;Kim, Won-Seok;Kweon, Ki-Yeoung;Lee, Min-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1920-1925
    • /
    • 2007
  • A transformer is a device that changes the current and voltage by electricity induced between coil and core steel, and it is composed of metals and insulating materials. In the core of the transformer, the thermal load is generated by electric loss and the high temperature can make the break of insulating. So we must cool down the temperature of transformer by external radiators. According to cooling fan's usage, there are two cooling types, OA(Oil Natural Air Natural) and FA(Oil Natural Air Forced). For this study, we used Fluent 6.2 and analyzed the cooling characteristic of radiator. we calculated 1-fin of detail modeling that is similar to honeycomb structure and multi-fin(18-fin) calculation for OA and FA types. For the sensitivity study, we have different positions(side, under) of cooling fans for forced convection of FA type. The calculation results were compared with the measurement data which obtained from 135.45/69kV ultra transformer flowrate and temperature test. The aim of the study is to assess the Fluent code prediction on the radiator calculation and to use the data for optimizing transformer radiator design.

  • PDF

Survey on the Uses of Heating-Cooling Facilitis.Accessory Devices and Residents' Evaluation in Cheju Province (제주도 지역 냉난방 설비.보조기구 사용실태와 거주자의 평가)

  • 김봉애
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.5
    • /
    • pp.239-248
    • /
    • 1997
  • to design nature-affinitive, reasonable and effcient thermal environment plannings and facilities, the holding patterns of heating-cooling facilities·accessory devices and residents' evaluation in Cheju Province were surveyed as well as residents' understanding for them. Major findings of this study are summarized as follows: 1) In the cooling system, the percentage of air-conditioner possessor was 19.4%, which was lower possessive rate than mainland's. The location of air-conditioner was mainly public area. That is, 55.3% of the location is livingroom, and the rest was Anbang. the general cooling accessory device was a fan. It was frequently used at the children's room and the dining room. The possessive patterns of air-conditioner depend on the characteristics of residents, such as the academic carrier and the average monthly income. Characteristics of house for air-conditioner possess depend on the location, house type, the size of floor space. 2) In the heating system, individual heating system reached to 57.3%. Heating accessory devices were oil stove and electric heating blanket. Only 32.2% of survey population were holders. 3) Residents preferred better ventilated room arrangement, which was characteristic of subtropical areas. 4) The preferred condition for heating-cooling facilities and accessory devices were strong solidity, less air pollution, and less noise.

  • PDF

Study on the Cooling Performance of Single and Cascade Refrigeration Systems Using Thermoelectric Modules (열전소자를 이용한 싱글 및 캐스케이드 냉동시스템의 냉각 성능에 관한 연구)

  • Lim, Changhak;Kim, Dongwoo;Kim, Yongchan;Seo, Kookjeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.641-646
    • /
    • 2013
  • The purpose of this study is to improve the cooling performance of single and cascade refrigeration systems using thermoelectric modules. The system consists of a heat sink, fan, and thermoelectric module. The operating parameters considered in this study include power distribution between the first- and second-stage thermoelectric modules, air flow, and variable condensing unit. The cooling capacity increased with decreases in the temperature difference between hot and cold surfaces, but decreased with increases in the condensing temperature. The COP decreased with increasing electric power of the thermoelectric module because of the increased Joule heat. The cooling performance improvement using the thermoelectric module is represented by the freezer temperature.