• Title/Summary/Keyword: Electric automobile

Search Result 246, Processing Time 0.022 seconds

Thermal Property of Mo-5~20 wt%. Cu Alloys Synthesized by Planetary Ball Milling and Spark Plasma Sintering Method (유성볼밀링 및 스파크 플라즈마 소결법으로 제조한 Mo-5~20 wt%. Cu 합금의 열적 특성)

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.516-521
    • /
    • 2016
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile, and many other applications due to their excellent physical and electric properties. Especially, Mo-Cu composites with 5 ~ 20 wt.% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength, and prominent electrical and thermal conductivity. In most of the applications, highly-dense Mo-Cu materials with homogeneous microstructure are required for better performance. In this study, Mo-Cu alloys were prepared by PBM (planetary ball milling) and SPS (spark plasma sintering). The effect of Cu with contents of 5~20 wt.% on the microstructure and thermal properties of Mo-Cu alloys was investigated.

LIBS Analysis on Magnetic Force of Dissimilar Material Using SMAW (이종재료의 피복아크 용접에서 자기력에 따른 LIBS 해석)

  • Lee, Chul Ku;Lee, Wooram
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.54-61
    • /
    • 2013
  • This paper reports mild steel(SPHC) and stainless steel(STS304) sheets commonly used for railroad cars or commercial vehicles such as in the automobile and shipbuilding industries. The sheets are used in these applications, which are mainly fabricated using the shielded metal arc welding(SMAW) of dissimilar materials. It also reports an interesting application of Laser Induced Breakdown Spectroscopy(LIBS) in order to determine the elemental composition diffusion of SPHC and STS304. Arc blow produced by magnetic force during the electric arc welding prevents the formation from a sound weldment. In particular, the mechanical properties of the joint are influenced by not only by geometrical and mechanical factors but also the welding conditions for the arc welded joint. Therefore, the mechanical properties and performance are evaluated by performing a physicochemical component analysis. And they increase in accordance with content of elements and microstructure in mild steel. As results, appropriate range for magnetic fields could be achieved. Therefore, the effect of magnetic force in a butt weld of mild steel plates was investigated by comparing to the measured data.

Study on Performance Experiment and Analysis of Aluminum Disc Brake (알루미늄 디스크 브레이크의 성능 실험 및 해석에 관한 연구)

  • Ryu, Mi-Ra;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho;Shim, Jae-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-68
    • /
    • 2013
  • The present research aims to develop aluminum disc brakes to replace existing cast iron disc brakes in automobiles. The foundation for developing an aluminum disc is laid by investigating the performance characteristics of existing cast iron disc brakes and comparing those characteristics with those of aluminum disc brakes. This study involves FEM thermal/structural analysis of disc materials and experimental tests using a brake dynamometer. The results of this study show that, aluminum discs have not only better thermal/mechanical properties than existing cast iron discs, including better heat, wear, and crack resistance, but also that aluminum discs. Weigh less than existing cast iron discs, which results in improved maneuverability. Aluminum discs will become a more essential part of automobiles as electric cars become the major means of transportation.

Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles (무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.

Development of Gasoline Engine Renewal CNG Generator and a Study on Exhaust Gas Characteristics of Equivalent Diesel Engine (가솔린 엔진개조 CNG 발전기 개발과 동급 디젤엔진의 배출가스 특성 연구)

  • Lee, Jung-Cheon;Kim, Ki-Ho;Lee, Jung-Min;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.74-79
    • /
    • 2018
  • Compressed natural gas has a high octane number and low particulate emission characteristics as compared with petroleum-based fuels, so it can respond to exhaust gas regulations positively. A natural gas engine has been introduced to improve the quality of the atmosphere, a diversity of fuel, a stable supply, and it has widely been used in city buses and garbage trucks. Recently, the natural gas engine has received attention by overcoming the disadvantage of the theoretical air-fuel ratio method through the development of EGR cooler and engine parts with the development of LP-EGR technology. In this study, we try to develop the cogeneration system that can simultaneously generate electric power and heat by remodeling the gasoline engine to the mixer type CNG engine. As a result, it was able to reduce the NOx (approximately 77%) compared to the diesel engines with same displacement.

A Method of Test Case Generation Based on Behavioral Model for Automotive SPICE (Automotive SPICE를 위한 행위 모델 기반의 테스트 케이스 생성 기법)

  • Kim, Choong S.;Yang, Jae-Soo;Park, Young B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • As the automobile industry has shifted to software, the Automotive SPICE standard has been established to ensure efficient product development process and quality. In the assessment model, the HIS Scope is the minimum standard for small and medium automotive electric companies to meet OEM requirements. However, in order to achieve the HIS Scope, the output of each process stage that meets the verification criteria of Automotive SPICE must be created. In particular, the test phase takes a lot of resources, which is a big burden for small and medium-sized companies. In this paper, we propose a methodology for creating test cases of software integration test phase based on UML sequence diagram, which is a software design phase of Automotive SPICE HIS Scope, by applying behavior model based testing method. We also propose a tool chain for automating the creation process. This will reduce the resources required to create a test case.

  • PDF

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

A Study on Analysis of Development Effectiveness of Composite Brake through Real Car Comparison and Verification (실차 비교 및 검증을 통한 복합재 브레이크의 개발 효용성 분석에 관한 연구)

  • Shim, J.H.;Kwon, Y.U.;Lee, J.H.;Shin, U.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.41-47
    • /
    • 2022
  • Composite material is recently very important material for eco-friendly vehicles because of its excellent mechanical property and lightweight effect. So, many research results have been recently published for developing the composite material to apply vehicles. In this paper, new brake system is presented using composite material to response this situation. And advantages in terms of performance compared to competitive company will be discussed in depth to verify superiorities of the new composite brake. To do so, composite brake systems which have the same size as the competitive company to the same vehicle is applied. And superiorities through a variety of test results are presented. First, normal braking performances are compared with competitive company through braking effect, heat capacity and friction test, Second, circuit driving and high speed fade test are also verified with competitive company to confirm harsh braking performances for the new composite brake system. Finally, the effects of applying the composite brake to automobile industry like electric car are analyzed.

Construction and Effectiveness Evaluation of Multi Camera Dataset Specialized for Autonomous Driving in Domestic Road Environment (국내 도로 환경에 특화된 자율주행을 위한 멀티카메라 데이터 셋 구축 및 유효성 검증)

  • Lee, Jin-Hee;Lee, Jae-Keun;Park, Jaehyeong;Kim, Je-Seok;Kwon, Soon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.273-280
    • /
    • 2022
  • Along with the advancement of deep learning technology, securing high-quality dataset for verification of developed technology is emerging as an important issue, and developing robust deep learning models to the domestic road environment is focused by many research groups. Especially, unlike expressways and automobile-only roads, in the complex city driving environment, various dynamic objects such as motorbikes, electric kickboards, large buses/truck, freight cars, pedestrians, and traffic lights are mixed in city road. In this paper, we built our dataset through multi camera-based processing (collection, refinement, and annotation) including the various objects in the city road and estimated quality and validity of our dataset by using YOLO-based model in object detection. Then, quantitative evaluation of our dataset is performed by comparing with the public dataset and qualitative evaluation of it is performed by comparing with experiment results using open platform. We generated our 2D dataset based on annotation rules of KITTI/COCO dataset, and compared the performance with the public dataset using the evaluation rules of KITTI/COCO dataset. As a result of comparison with public dataset, our dataset shows about 3 to 53% higher performance and thus the effectiveness of our dataset was validated.

A Study on the Tribological Characteristics of AL7075-T7351 Aluminum Alloy Coated with TiN Nano Thin Film (TiN 나노 박막을 코팅한 AL7075-T7351 알루미늄 합금의 트라이볼로지 특성에 관한 연구)

  • Kwang-Su Kim;Sung-Hoon Im;Do-Hyeon Kim;Hyeong-Jun Park;Sun-Cheol Huh
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.743-750
    • /
    • 2023
  • Aluminum alloy is a material widely used in the aircraft industry. However, since it has relatively low hardness, strength and tribological properties, it is necessary to improve these properties. In this paper, a TiN thin film was coated on the surface of AL7075-T7351 using DC magnetron sputtering. The coating was performed by setting different deposition pressure, deposition time, and applied power. Then, the tribological properties of the thin film were investigated. As a result of the experiment, the hardness of the thin film was higher than that of the base material, and the specimen with the highest hardness had excellent friction coefficient, wear amount, and adhesive strength characteristics. Through this study, it was confirmed that the tribological characteristics of aluminum alloy can be improved by depositing thin films using DC magnetron sputtering.