• Title/Summary/Keyword: Electric arc furnace dust

Search Result 54, Processing Time 0.027 seconds

Study on prestressed concrete beams and poles with cement replaced by steel dust

  • Sujitha Magdalene, P;Harishankar, S
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.391-405
    • /
    • 2017
  • Cement acts as the most important component of concrete as it binds and holds the concrete together. But it is one of the major $CO_2$ emitters all over the world, during manufacturing (900 kg of $CO_2$ per 1000 kg). Some of the modern construction methods aim at reducing the amount of usage of cement and came out with numerous solutions for replacement of the same. One such supplement in current trend is the Steel dust or the Electric Arc Furnace Dust (EAFD), which is a waste product from the electric arc furnace when the scrap metal is melted. When the concrete containing steel dust is exposed to atmosphere, the environmental oxygen and moisture play role to form rust and ultimately the member becomes harder. As Cement is the binder of conventional concrete, only certain percentage of the same could be replaced by the new material, steel dust. Tests were conducted for the 28 days cube strength of M45 grade (suitable for prestressing) concrete which has 0%, 10%, 20%, 30%, 40% and 50% steel dust instead cement. From the test, the optimum percentage replacement of steel dust was obtained, for which the beams and overhead poles were cast, prestressed and tested for the failure load and deflections. A conventional concrete beam and overhead pole were also cast, prestressed and tested to compare the results with those of the beam and pole that contained steel dust. The load vs. deflection plot and other results from the test is also discussed.

Effects of Additives and Sintering Method on the Properties of Light Aggregate Prepared from EAF Dust/Clay (첨가제와 소결방법이 EFA Dust/점토 소결체의 경량화에 미치는 영향)

  • 권영진;이기강;김유택;김영진;강승구;김정환;박명식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.309-316
    • /
    • 2003
  • EAF(Electric Arc Furnace) Dust classified as special wastes containing heavy metal contaminants may cause to damage an environment such as underground water contamination if they were not treated properly. The possibility of producing the porous sintered body made from EAF Dust/clay composition system was studied. Mixing of EAF Dust and clay was carried out using wet-mixing process and two different sintering methods such as rapid and normal heat treatment were tried. By observing density, porosity and microstructure of sintered bodies, it was found that the bloating phenomenon depend on the contents of C, where the liquid phase occur or not during the sintering process. To obtain a light-aggregate of porous body due to bloating, the rapid heating was better than the normal heating at sintering process.

Study for Manufacturing of Zinc Sulfate from Electric Arc Furnace Dust by Hydrometallrugical Process (제강분진으로부터 습식제련공정에 의한 황산아연의 제조 연구)

  • Dong Ju Shin;Sung-Ho Joo;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Herein, we selectively recovered Zn and produced ZnSO4 from electric arc furnace dust using a hydrometallurgical process. The analysis of the properties of the electric arc furnace dust revealed that the Fe content (9.9%) was relatively low while the Mn content (19%) was high as compared to the composition of general dust. Therefore, an appropriate hydrometallurgical process was designed based on the properties of the raw materials. In the leaching process involving the use of 1.6 M sulfuric acid and 20% solid-liquid ratio at 60℃ for 1 h, 85% of the Zn and Mn got dissolved while the Fe was not leached. To selectively recover Zn, a solvent extraction process using D2EHPA as the extractant was chosen, and 99% of the Zn was extracted using 0.8 M D2EHPA with 32% saponification and an O/A ratio of 2 using counter-current 3-stage extraction. Mn was entirely scrubbed with an aqueous sulfuric acid solution of pH 1.5. Finally, Zn was concentrated and stripped using 1.5 M sulfuric acid at an O/A ratio of 4 using counter-current 4-stage stripping. The stripping solution contained 40 g/L of Zn, and 99.9% of ZnSO4∙H2O was obtained by vacuum distillation.

The Optimal Composition of Cold Bonded Pellet for Recycling EAF Dust Directly to the Furnace

  • Lee, Kwang-Keun;Kim, Tai-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.370-374
    • /
    • 2001
  • The degree of iron recovery from dust agglomerates was investigated experimentally to determine the optimum mixing ratio of coke in cold bonded pellet(CBP) which is fed into electric arc furnace(EAE) in the minimill plant. From the XRD analysis for EAF dust, magnetite(Fe$_3$O$_4$) and franklinite(ZnFe$_2$O$_4$) was identified as major components. Maximum iron recovery was obtained for the solid carbon content of approximately 18 weight percent. From plant trials of CBP composed of this optimal mixing condition, it was observed that electric power consumption and sulfur content increased with increasing the quantity of CBP.

  • PDF

An Experimental Study on Properties of Electric Arc Furnace Dust for Minearal Filler of Asphalt Concrete (아스팔트 콘크리트용 채움재로서 제강더스트의 특성에 관한 실험적 연구)

  • 김주원
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.161-168
    • /
    • 1993
  • 본 연구는 아스팔트 콘크리트의 채움재로서 제강더스트의 사용가능성을 실험을 통하여 분석하였다. 실험에는 제강더스트의 기본물성시험과 혼합물의 비교시험을 포함시켰다. 비교시험에서는 채움재로서 석회석분을 사용하는 경우와 제강더스트를 사용하는 경우, 채움재와 아스팔트를 혼합한 필리-비투먼, 그리고 골재까지 혼합한 아스팔트 콘크리트에 대하여 물성을 비교분석하였다. 실험결과 제강더스트는 포장용 채움재의 규정을 만족시키며, 제강더스트를 채움재로 사용한 아스팔트 콘크리트보다 우수하며, 제강더스트는 아스팔트 혼합물용 채움재로써 충분히 사용가능한 것으로 밝혀졌다.

RECOVERY OF METALS FROM EAF DUST WITH RAPID SYSTEM

  • Shin, Hyoung-ky;Moon, Seok-min;Jhung, Sung-sil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.381-386
    • /
    • 2001
  • The dust generated from the electric arc furnace steel making process is classified as hazardous material by Korean Environmental Protection Acts, mainly because of the existence of water teachable Pb, Zn and Cd. Thus the treatment of EAF dust is being carried out to fulfill both the environmental aspect and recovery of valuable metals. To establish the proper process for recovering the valuable metals (Fe, Zn, Pb and Cd) and producing the non-toxic slag from EAF dust, using RAPID-10 system, feasibility study have been carried out. To find out the scale-up factor for designing the commercial scale EAF dust treatment process(capacity 50,000 ton EAF dust per year) entitled RAPID-50 system. The design and construction of RAPID-50 (RIST Arc Plasma Industrial Device) system for treating 50,000 ton of EAF dust per year is now undergoing. Overall plan for treating EAF dust generated in KOREA will be setup after successful operation (December, 2002) of RAPID-50 system.

  • PDF

Synthesis and Characteristics of Blue Ceramic Pigments Using Electric Arc Furnace Dust (제강분진을 활용한 고온발색 청색무기안료 합성 및 특성에 관한 연구)

  • Son, Bo-Ram;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.184-189
    • /
    • 2014
  • Electric arc furnace dust (EAFD) is a solid waste generated by the steel-scrap recycling process. It mainly consists of zinc oxides (ZnO), alumina ($Al_2O_3$), iron oxides ($Fe_2O_3$), and silica ($SiO_2$). Here we report the preparation and characterization of blue ceramic pigments using EAFD powder as a starting material. $(Zn(EAFD),Co)Al_2O_4$ blue ceramic pigment was prepared by the solid-state reaction method. The color characteristics of the pigment obtained were compared with those of pure $CoAl_2O_4$. The new pigment was characterized using XRD, CIE-$L^*a^*b^*$ color-measurements, SEM, and EDX. The XRD analysis revealed that the $(Zn(EAFD),Co)Al_2O_4$ pigment was composed of mainly the spinel phase of $(Zn,Co)Al_2O_4$. The $Zn(EAFD)_{0.25}Co_{0.75}Al_2O_4$ pigments showed a vivid blue color with a $b^*$ value of -28.64 and a good glaze stability with a transparent glaze.

Toward high recovery and selective leaching of zinc from electric arc furnace dust with different physicochemical properties

  • Lee, Han Saem;Park, Da So Mi;Hwang, Yuhoon;Ha, Jong Gil;Shin, Hyung Sang
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.335-344
    • /
    • 2020
  • This work describes highly efficient recovery and selective leaching of Zn from electric arc furnace dust (EAFD) with different physicochemical properties, induced by acid leaching at ambient conditions. The chemical compositions, mineralogical phases, and particle sizes of the EAFDs were analyzed and compared. The effects of leaching time, liquid/solid ratio, acid type, and acid concentration on the selective leaching of Zn were also studied. The EAFD with high Fe/Zn ratio (> 1, EAFD3) was richer in ZnFe2O4 and exhibited larger particle size than samples with low Fe/Zn ratio (< 1, EAFD1,2). ANOVA analysis revealed that the Fe/Zn ratios of the EAFDs also have a significant effect on Zn extraction (p < 0.005). Selective leaching of Zn with minimum Fe dissolution was obtained at pH > 4.5, regardless of other parameters or sample properties. The maximum Zn extraction rate obtained by the pH control was over 97% for EAFD1 and EAFD2, 76% for EAFD3, and 80% for EAFD4. The present results confirm that the Fe/Zn ratio can be used to identify EAFDs that permits facile and high-yield Zn recovery, and pH can be used as a process control factor for selective leaching of Zn regardless of any differences in the properties of the EAFD sample.

The influence of EAF dust on resistivity of concrete and corrosion of steel bars embedded in concrete

  • Almutlaq, Fahad M.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.163-176
    • /
    • 2014
  • Essentially, when electrical current flows easily in concrete that has large pores filled with highly connective pore water, this is an indication of a low resistivity concrete. In concrete, the flow of current between anodic and cathodic sites on a steel reinforcing bar surface is regulated by the concrete electrical resistance. Therefore, deterioration of any existing reinforced concrete structure due to corrosion of reinforcement steel bar is governed, to some extent, by resistivity of concrete. Resistivity of concrete can be improved by using SCMs and thus increases the concrete electrical resistance and the ability of concrete to resist chloride ingress and/or oxygen penetration resulting in prolonging the onset of corrosion. After depassivation it may slow down the corrosion rate of the steel bar. This indicates the need for further study of the effect of electric arc furnace dust (EAFD) addition on the concrete resistivity. In this study, concrete specimens rather than mortars were cast with different additions of EAFD to verify the electrochemical results obtained and to try to understand the role of EAFD addition in influencing the corrosion behaviour of reinforcing steel bar embedded in concrete and its relation to the resistivity of concrete. The results of these investigations indicated that the corrosion resistance of steel bars embedded in concrete containing EAFD was improved, which may link to the high resistivity found in EAFD-concrete. In this paper, potential measurements, corrosion rates, gravimetric corrosion weight results and resistivity measurements will be presented and their relationships will also be discussed in details.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).