• Title/Summary/Keyword: Electric and Mechanical work

Search Result 173, Processing Time 0.027 seconds

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

A Study on the Surface Finishing Technique using Electrorheological Fluid

  • Park, Sung-Jun;Kim, Wook-Bae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • The electrorheological(ER) fluid has been used to the ultraprecision polishing of single crystal silicon as new polishing slurry whose properties such as yield stress and particle structure changed with the application of an electric field. In this work, it is aimed to find the effective parameters in the ER fluid on material removal in the polishing system whose structure is similar to that of the simple hydrodynamic bearing. The generated pressure in the gap between a moving wall and a workpiece, as well as the electric field-induced stress of the mixture of ER fluid-abrasives, is evaluated experimentally, and their influence on the polishing of single crystal silicon is analyzed. Moreover, the behavior of abrasive and ER particles is described.

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin;Dae-Kwang Lim;Taehee Lee;Sang-Yun Jeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2023
  • Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

Study of Fuel Consumption Characteristics and Regenerative Braking Recovery Rate in a TMED Type Parallel Hybrid Electric Vehicle (TMED방식 병렬형 하이브리드 차량의 회생제동 회수율 및 연비 특성 연구)

  • Chung, Jin Ho;Kim, Jin Su;Kim, Ju Whan;Lee, Jin Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.485-494
    • /
    • 2016
  • In this work, we conducted a study of fuel consumption characteristics and regenerative braking recovery rate by conducting an experiment using a TMED type parallel hybrid electric vehicle. As regenerative braking technology is considered essential to improve the energy efficiency of the hybrid vehicle, it is necessary to conduct research on the regenerative braking system. Therefore, the electrical characteristics, current balance, and fuel consumption were investigated using an EC type chassis dynamometer with experimental conditions as per IM240 mode. From the results, it was observed that when the initial SOC condition was lower, the engine operating time of the hybrid vehicle increased, and the energy efficiency decreased. While operating in the driving mode characteristics condition and the driving characteristics condition, the difference in the average fuel consumption was not significant. However, after completion of the experiment, there was a difference in the engine operation.

TRIBOLOGICAL STUDY FOR DEVELOPMENT OF ACCELERATED WEAR TESTING METHOD UNDER LUBRICATION

  • Lee, H.C.;Sung, I.H.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.225-226
    • /
    • 2002
  • In this work, the friction and wear behavior under' various lubrication regimes were investigated. The objective of this work is to develop an Accelerated Life Test (ALT) method for the durability evaluation of a machine element which is operated under lubrication. Electric contact resistance and frictional forces were measured with respect to a wide range of the loads and speeds under various lubrication regimes using a pin-on-disk type tribotester. From the experimental results, it could be found that an effective and reliable ALT method could be achieved by controlling the lubrication regime through the measurements of friction coefficient and contact resistance with respect to load and sliding speed.

  • PDF

Sloshing of liquids in partially filled tanks - a review of experimental investigations

  • Eswaran, M.;Saha, Ujjwal K.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-155
    • /
    • 2011
  • Liquid sloshing constitutes a broad class of problems of great practical importance with regard to the safety of liquid transportation systems, such as tank trucks on highways, liquid tank carriages on rail roads, ocean going vessels and propellant tanks in liquid rocket engines. The present work attempts to give a review of some selected experimental investigations carried out during the last couple of decades. This paper highlights the various parameters attributed to the cause of sloshing followed by effects of baffles, tank inclination, magnetic field, tuned liquid dampers, electric field etc. Further, recent developments in the study of sloshing in micro and zero gravity fields have also been reported. In view of this, fifteen research articles have been carefully chosen, and the work reported therein has been addressed and discussed. The key issues and findings have been compared, tabulated and summarized.

A Study on Electronically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV) (연료전지 자동차용 R-134a 전동식 히트펌프 시스템 개발에 관한 연구)

  • Lee, Jun-Kyoung;Lee, Dong-Hyuk;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.124-132
    • /
    • 2007
  • The main objective of this work is to investigate the characteristics of a heat pump system for fuel cell electric vehicle (FCEV). The present heat pump system adopts an electrically driven compressor running with R134a and uses the heat from the fuel cell stack as the heat source for the exterior heat exchanger. The experimental work has been done with various operating conditions such as different compressor speeds, fuel cell stack coolant temperatures and flow rates. The heating capacity was measured to be from 4 to 10 kW at $-20^{\circ}C$ ambient temperature, and the outlet temperature of interior heat exchanger was up to $70^{\circ}C$. After 30 seconds from start-up, the system reached a steady state and the heating capacity of 6.8 kW was acquired, and after 90 seconds, the air outlet temperature of interior heat exchanger became $35^{\circ}C$.

A Study on Effect of Coating Stain on the Performance of Electric Cable (도장 오염이 Electric Cable의 성능에 미치는 영향 연구)

  • Cho, Yeon-Ho;Lee, Sang-Hyeok;Son, Young-Shuk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.18-23
    • /
    • 2009
  • After the installation of electric cables at block, PE(pre-erection) and hull stages, the coating stains on the electric cable sheath were unavoidably occurred by additional painting process. According to class rules paint or coating applied on the electric cables shall not adversely affect the mechanical, chemical of fire resistant characteristics of the electric cable sheath. However, there has not been quantitatively studied about the effect of coating stains on properties of sheath materials. In this study, we tried to investigate the effect of coating stains on the performance and deterioration of sheath materials by using FTIR, SEM analysis, flame retardant, high potential voltage and tensile test. The results sowed that coating stains, which were occurred during painting work on site could not adversely affect on the performance and deterioration of sheath materials.

  • PDF

Ionic polymer-metal composite as energy harvesters

  • Tiwari, Rashi;Kim, Kwang J.;Kim, Sang-Mun
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.549-563
    • /
    • 2008
  • The ability of an electroactive polymer, IPMC (Ionic Polymer Metal Composites,) to produce electric charge under mechanical deformations may be exploited for the development of next generation of energy harvesters. Two different electrode types (gold and platinum) were employed for the experiments. The sample was tested under dynamic conditions, produced through programmed shaking. In order to evaluate the potential of IPMC for dry condition, these samples were treated with ionic liquid. Three modes of mechanical deformations (bending, tension and shear) were analyzed. Experimental results clearly indicate that IPMCs are attractive applicants for energy harvesting, with inherent advantages like flexibility, low cost, negligible maintenance and virtually infinite longevity. Besides, preliminary energy harvesting model of IPMC has been formulated based upon the work of previous investigators (Newbury 2002, Newbury and Leo 2002, Lee, et al. 2005, Konyo, et al. 2004) and the simulation results reciprocate experimental results within acceptable error.