• Title/Summary/Keyword: Electric Vehicle(EV)

Search Result 336, Processing Time 0.033 seconds

Development of electric vehicle maintenance education ability using digital twin technology and VR

  • Lee, Sang-Hyun;Jung, Byeong-Soo
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, the maintenance training manual of EV vehicle was produced by utilizing digital twin technology and various sensors such as IR-based light house tracking and head tracker. In addition, through digital twin technology and VR to provide high immersiveness to users, sensory content creation technology was secured through animation and effect realization suitable for EV vehicle maintenance situation. EV vehicle maintenance training manual is 3D engine programming and real-time creation of 3D objects and minimization of screen obstacles and selection of specific menus in virtual space in the form of training simulation. In addition, automatic output from the Head Mount Display (HUD), EV vehicle maintenance and inspection, etc., user can easily operate content was produced. This technology development can enhance immersion to users through implementation of detailed scenarios for maintenance / inspection of EV vehicles" and 3D parts display by procedure, realization of animations and effects for maintenance situations. Through this study, familiarity with improving the quality of education and safety accidents and correct maintenance process and the experienced person was very helpful in learning how to use equipment naturally and how to maintain EV vehicles.

EV Battery State Estimation using Real-time Driving Data from Various Routes (전기차 주행 데이터에 의한 경로별 배터리 상태 추정)

  • Yang, Seungmoo;Kim, Dong-Wan;Kim, Eel-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.139-146
    • /
    • 2019
  • As the number of electric vehicles (EVs) in Jejudo Island increases, the secondary use of EV batteries is becoming increasingly mandatory not only in reducing greenhouse gas emissions but also in promoting resource conservation. For the secondary use of EV batteries, their capacity and performance at the end of automotive service should be evaluated properly. In this study, the battery state information from the on-board diagnostics or OBD2 port was acquired in real time while driving three distinct routes in Jejudo Island, and then the battery operating characteristics were assessed with the driving routes. The route with higher altitude led to higher current output, i.e., higher C-rate, which would reportedly deteriorate state of health (SOH) faster. In addition, the SOH obtained from the battery management system (BMS) of a 2017 Kia Soul EV with a mileage of 55,000 km was 100.2%, which was unexpectedly high. This finding was confirmed by the SOH estimation based on the ratio of the current integral to the change in state of charge. The SOH larger than 100% can be attributed to the rated capacity that was lower than the nominal capacity in EV application. Therefore, considering the driving environment and understanding the SOH estimation process will be beneficial and necessary in evaluating the capacity and performance of retired batteries for post-vehicle applications.

A Study on the Paper and Patents Trends of Electric Vehicle (전기자동차 문헌 및 특허정보 분석)

  • 나도백;김상우;이창호
    • Journal of Korea Technology Innovation Society
    • /
    • v.5 no.3
    • /
    • pp.354-366
    • /
    • 2002
  • This study is a case study on the analysis of technological informations and patents in Electric Vehicle(EV). It first discusses technological trend, and second patents trends in comparison with major countries such as USA, Japan, Europe and Korea. Technological activities in EV are increasing year after year in the world. The focuses are concentrated in battery and recharging technology.

  • PDF

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

Performance Test of Quick Charger for Electric Vehicle (전기자동차 급속충전기 성능시험)

  • Han, Seung-Ho;Yang, Seung-Kwon;Kim, Sang-Bum;Lee, Han-Byul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1189-1190
    • /
    • 2011
  • 본 논문은 전기자동차(EV, Electric Vehicle)에 충전용 대용량 직류(DC) 전력을 공급할 수 있는 급속충전기를 개발하고 그 성능을 정의하며 충전성능시험장치를 개발하여 급속충전기의 성능시험을 한 결과에 관한 것이다. 급속충전기는 EV의 충전에 필요한 시간을 단축하고자 배터리가 허용하는 한계까지 전압, 특히 전류를 높여 급속히 충전을 한다. EV와 충전기 사이에는 이러한 전력공급 외에도 커넥터 연결확인 및 차량존재 유무 등의 안전을 체크하는 아날로그 시그널과 EV의 배터리관리장치(BMS)에서 충전기에 필요전력을 통보하는 디지털 통신이 필요하여 충전성능을 시험하기 위해서는 전력, 아날로그 시그널, 디지털 통신을 차량 대신 동시에 주고받으며 충전기를 시험하는 충전성능 시험장치가 필요하다. 본 논문에서는 어떻게 시험장치를 구성하여 이러한 실험을 수행하였는지, 그리고 충전기성능 분석결과를 설명하고자 한다.

  • PDF

A Study on Regenerative Braking of Electric Vehicle (전기자동차 회생제동에 관한 연구)

  • Jeon, Beom-Jin;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.290-292
    • /
    • 1995
  • In this paper, the regenerative braking control system for 4 WD Electric Vehicle (EV) is proposed. Many studies on efficient drive of EV are being done to prolong the one charge distance. By using the regenerative braking (REGEN), the resulting EV system has following advantages : a) battery is recharged with the mechanical energy of EV, b) the running load can be reduced, and consequently the efficiency can be increased. The problem of REGEN that the power acceptance ability of battery is limited can be solved by controlling regenerative braking torque. The proposed control system has following characteristics. : a) It controls regenerative power by varying mechanical braking torque. b) It controls mechanical braking torque using load torque observer. c) It controls the regenerative braking torque independently. The control scheme and simulation results are presented for the experimental car.

  • PDF

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

The development of controller for lithium-ion battery of electric vehicle (전기자동차용 리튬이온 배터리 제어를 위한 제어기 개발)

  • Cho, Sebong;Hong, Hyunju;Jeon, Ywunseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.96.2-96.2
    • /
    • 2010
  • EV(Electric Vehicle) 차량에서 BMS(Battery Management System) 은 모터에 공급되는 고전압 배터리의 충전상태를 감지하여 VCU(Vehicle Control Unit)에 전송하게 된다. VCU에서는 배터리의 충전상태를 확인하여 모터 구동 전략을 수립하여 각 제어기에 전송하게 된다. 위와 같이 EV에서 배터리 충전상태를 정확하게 감지하지 못한다면, 모터 구동을 위한 전략 수립에 많은 제약이 따르게 된다. 정확한 배터리 충전 상태를 감지하기 위해서는 배터리 각 셀의 전압/전류/온도 등을 측정하여 연산에 의해 결정된다. 그 중 셀 전압 측정 방식은 Photomos relay를 이용한 방식으로 하드웨어적인 오차에 ${\pm}$수십mV보다 더둑 더 정밀하게 측정할 수 있는 방법이 없었다. 하지만, 셀 전압 측정 정밀도를 향상시키기 위해 신규로 개발된 battery monitoring IC를 이용한 BMS의 H/W 개발에 대해 설명할 것이다. 또한, Monitoring IC를 이용한 BMS의 셀 전압 측정 정밀도를 얼마나 개선시킬 수 있는지에 대해 연구하였다.

  • PDF

Analysis of Technical Trend of Electric Agricultural Field Machinery

  • Kim, Yong Joo;Kim, Wan Su;Chung, Sun Ok;Lee, Dae Hyun
    • Agribusiness and Information Management
    • /
    • v.6 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • As basic research to develop HEV and EV agricultural field machinery, the present study analyzes the technical trend of electric agricultural field machinery through product analysis, paper analysis, and patent analysis concerning HEV and EV in the automobile, construction machinery, and agricultural machinery sectors. For product analysis, the homepages of companies in these sectors were consulted to analyze the number of products of each company. For paper analysis, key words related to HEV and EV were selected, a search formula was drawn up, and articles search sites were consulted. And for patent analysis too, key words were selected and then a search formula was drawn up to examine published patent applications or registered patent applications, and trends were analyzed by structure, country, and year. The number of HEV and EV products were 17 in the automobile area, 8 in construction machinery, and 4 in agricultural machinery. Notably, in the agricultural machinery area, all HEV and EV products were from advanced companies overseas. In terms of papers, papers published in the past 5 years were searched and 33,195 papers were from the automobile area, 3,806 were from construction machinery, and 2,687, the fewest papers, were from the agricultural machinery area. A search of patents in the electric drive technology area in Korea, USA, and Japan, and Europe showed 1,927 valid patents, with 1,120 in Japan, 497 in USA, 193 in Korea, and 117 in Europe. Analysis of the trend of research on electric agricultural field machinery by product, paper, and patent shows the development of HEV and EV technology in Korea is insufficient compared to USA, Japan, and Europe, which means rapid technological development is needed.