• Title/Summary/Keyword: Electric Vehicle(EV)

Search Result 336, Processing Time 0.026 seconds

Korean V2G Technology Development for Flexible Response to Variable Renewable Energy (변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발)

  • Son, Chan;Yu, Seung-duck;Lim, You-seok;Park, Ki-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.

Electric Vehicle Market and Battery Related Technology Research Trends (전기자동차 시장 및 배터리 관련 기술 연구 동향)

  • KIM, YANGHWA;LIM, JAEWAN;PARK, GYUYEOL;LIM, OCK TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.362-368
    • /
    • 2019
  • Electric vehicles contribute greatly to energy conservation, $CO_2$ reduction and energy security through high fuel economy and various electric sources. Electric cars have a huge economic impact. More than 14 million hybrid electric cars have been sold worldwide. More than 3 million plug-in electric vehicles have been sold worldwide. The environmental impact depends greatly on the amount of national power generation, and as the electric grid becomes more and more carbon-intensive, countries are increasingly adopting hybrid and electric vehicles. Electricity is expanding beyond cars. Electric buses, trucks, and ships have similar benefits.

Inductive Charger of Battery for Electric Vehicles (전기자동차용 축전지의 유도성 충전 장치)

  • Kim, Heung-Geun;Park, Jeong-Woo;Kim, Sang-O
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.274-277
    • /
    • 1995
  • Recent environmental pollutions have intensified the need to develop zero emission vehicles. The most effect method of such solutions is EV. EV is high energy efficiency, easy to maintain, repair and is possible to make high performance control. However, because energy density of batteries is constrained and the distance covered one charge is short range. Also because EV has disadvantage of poor accelation ability, development of high performance battery is required for large scale use of EV. EV charger analogous to gas apparatus must also be developed immediately. Charger is discriminate between on-vehicle type and off-vehicle type. As off-vehicle type is able to charge fast and safe, inductive charging is considered. This paper aims to develope off-vehicle inductive charging system. Therefore, it achieved power factor correction converter, high frequency DC/AC inverter control algorithm development which gives proof validity through simulation and formulated the basic concept of high frequency transformer design for inductive charging.

  • PDF

Improved Slow Charge Scheme for non-communication Electric Vehiclesby Predicting Charge Demand

  • Chang, Tae Uk;Ryu, Young Su;Kwon, Ki Won;Paik, Jong Ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • Recently, the study and development of environment-friendly energy technique have increased in worldwide due to environmental pollution and energy resources problems. In vehicle industry, the development of electric vehicle(EV) is now on progress, and also, many other governments support the study and development and make an effort for EV to become widely available. In addition, though they strive to construct the EV infra such as a charge station for EV, the techniques related to managing charge demand and peak power are not enough. The standard of EV communication has been already established as ISO/IEC 15118, however, most of implemented EVs and EV charge stations do not support any communication between each of them. In this paper, an improved slow charge scheme for non-communication EVs is proposed and designed by using predicting charge demand. The proposed scheme consists of distributed charge model and charge demand prediction. The distributed charge model is designed to manage to distribute charge power depending on available charge power and charge demand. The charge demand prediction is designed to be used in the distributed charge model. The proposed scheme is based on the collected data which were from EV slow charge station in business building during the past 1 year. The system-level simulation results show that the waiting time of EV and the charge fee of the proposed scheme are better than those of the conventional scheme.

Standard Strategies for Convergence Industries: A Case of Clash between Electric Vehicle Charging Standards and Smart Grid Communication Standards (미래 융합산업 표준 전략: 전기 자동차 충전 표준과 스마트그리드 통신 표준 충돌 사례)

  • Huh, Joon;Lee, Heejin
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.137-167
    • /
    • 2015
  • Based on the stakeholder theory, this paper analyzes a clash of standards in Korea's Electric Vehicle(EV) market, particularly between an EV charging standard and a smart grid communication standard in 2012~2013. For charging, EV is connected with the electric power grid and simultaneously exchanges data regarding the charging status. When EV is connected with the power grid, a clash between two standards may arise. It actually happened when BMW entered into the Korean EV market with the DC Combo charging system. In that course, the frequency interference occurred between the EV data communication technology adopted by BMW and the AMI(Advanced Metering Infrastructure) for the smart grid system in Korea. Standardization of Korea's EV charging systems was required to solve this problem. However, it had been delayed due to the confrontation between various stakeholders involved in the process of standardization. It lasted until the DC combo was accepted as one of the Korea EV charging standards(KSAE SAE 1772-2040, 2014.1) by KSAE(The Korea Society of Automotive Engineers) in January 2014. This is an interesting case in the age of convergence. As it deals with the standard competition not among EV standards, but a clash between the EV industry and the smart grid, i.e. electric power industry, it addresses the necessity to consider standardization processes between different industries. This study draws on the stakeholder theory to analyse the dynamics of the standard clash between EV charging systems and the smart grid system, which is a unique example of standard clash between different industries. We expect such clashes to increase in the age of convergence.

Battery Charging System for PHEV and EV using Single Phase AC/DC PWM Buck Converter

  • Lee, Jung-Hyo;Jung, Doo-Yong;Park, Sang-Hoon;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.736-744
    • /
    • 2012
  • In this paper, a battery charging system for Plug-in Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV), and operation algorithm of charging system are introduced. Also, the proposed charging system uses commercial electricity in order to charge the battery of parked PHEV and 48V battery charging system with power factor controllable single phase converter for PHEV is investigated in this paper. This research verifies the power factor control of input and the converter output controlled by the charge control algorithm through simulation and experiment.

The Research about Analyzing the Charging Pattern using the Electric Vehicle Running Feature Simulation (전기자동차 운행특성 모의를 통한 충전패턴 분석에 관한 연구)

  • Lim, You Seok;Bang, Chang Hyun;Han, Seung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.205-214
    • /
    • 2013
  • In this paper, we analyzed the various EV charging-infra information(charging status, charging pattern, charging rate, charging fee, etc.) through the charging infra simulator which would be of help to effectively construct the EV charging infrastructure. The proposed simulator virtually made the EV motoring pattern referred to TMS(Traffic Monitoring System) & Ministry of Land, Transport and Maritime Affairs, and analyzed the charging-infra information(amount of charging, accumulated charging fee, etc.) based on vehicle types, charging type, time and days using EV charging-fee list noticed by KEPCO. Through this simulator, we deducted some considerable contents to build the EV charging infrastructure similarly with real environment.

Study on the Application of V2G for Electric Vehicles in Korea Using Total Cost of Ownership Analysis (총소유비용 분석을 이용한 전기차의 V2G 도입에 대한 연구)

  • Kim, Younghwan;Lee, Jae-Seung
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-143
    • /
    • 2015
  • Increasing concerns on climate change and energy security accelerated policies to reduce green-house gas emission, especially from the transportation sector. Electric vehicle (EV) has been on the spotlight to deal with such environmental issue and V2G (Vehicle-to-Grid) technology began to draw attentions as an alternative to reduce ownership costs while contributing to an efficient and decentralized power grid. This study conducts a scenario analysis on total cost of ownership of EV under V2G scheme and compare with non-V2G EV and Internal Combustion Engine (ICE) vehicle. As result, V2G service is expected to provide an annual average profit of $210 to EV users willing to reverse flow its residual power in the battery. The profit from V2G service leaves a margin of $4,530 over operational lifetime, compared with $2,420 cost of charge for non-V2G EV. In summary, total cost of ownership of V2G-capable EV was 6.2% less than non-V2G EV and 10.2% higher than ICE vehicle. The results confirm a comparative economic advantage of operating EV under V2G scheme. Increased number of EVs with V2G service has shown to provide positive effects to power industry for valley filling in load distribution, thus, favorably increasing the overall economic feasibility.

A review on the recovery of the lithium carbonate powders from lithium-containing substances (리튬 함유 물질로부터 탄산리튬 회수에 대한 고찰)

  • Kim, Dae-Weon;Park, Jae Ryang;Ahn, Nak-Kyoon;Choi, Gwang-Mook;Jin, Yun-Ho;Yang, Jae-Kyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.91-106
    • /
    • 2019
  • The demand for lithium has increased sharply due to the explosive increase in lithium secondary batteries for environment-friendly vehicles (EV: Electric Vehicle, HEV: Hybrid Electric Vehicle, PHEV: Plug-in Hybrid Electric Vehicle). Traditionally, lithium has been produced mainly from lithium-containing minerals and brine, and recently it also has been recovered along with other valuable metals by recycling cathode materials of lithium secondary batteries. In this study, we comprehensively reviewed various recovering precesses of lithium from lithium-containing substances.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.