• Title/Summary/Keyword: Electric Power Management

Search Result 841, Processing Time 0.037 seconds

Experimental study on cooling performance characteristics of hybrid refrigeration system in a heavy duty vehicle (상용차 하이브리드 냉방시스템 냉방 성능 특성 연구)

  • Lee, Ho-Seong;Jeon, Hanbyeol;Kim, Jung-Il;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.419-425
    • /
    • 2019
  • The objective of this study was to investigate the cooling performance characteristics of a hybrid refrigeration system in a heavy duty vehicle. The tested hybrid refrigeration system had additionally an electric compressor besides the present mechanical compressor for selective use according to the operating conditions. The applied electric compressor was a scroll type and with 18.0 cc displacement. In order to analyze the performance characteristics of the hybrid refrigeration system with respect to the cooling capacity and Coefficient of Performance (COP), other components, including two different types of compressors, were installed and tested under various operating conditions such as compressor speed and air flow rate of the evaporator. When the electric compressor was operated at 4,500 rev/min, the cooling capacity was about 4.0kW and COP was 3.5. When the mechanical compressor was operated, whereas the cooling capacity was higher than the electric controlled compressor, COP was lower due to the larger displacement and higher power consumption. To analyze the hybrid system operating characteristics due to reasonable cooling capacity with electric compressor operation, the mechanical compressor and electric compressor were operated by turns every 10 minutes under certain system operating conditions. Because surge pressure occurred when both compressors were switched on, the operating strategy required some time to balance the system pressure.

Implementation of Communication Protocol between Control Centers using ICCP (ICCP를 사용한 전력센터간의 통신 프로토콜 구현)

  • Jang, Kyung-Soo;Chang, Byung-Wook;Hahn, Kyung-Duk;Shin, Dong-Ryeol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3910-3922
    • /
    • 2000
  • Current power systems are distributed geographically and operated in the form of Energy Management System(EMS)/ Supervision Control and Data Acquisition(SCADA) with the aid of computers and communications. Recently a variety of utilities have had interests in using inforrration technology to bring the efficiency and low operational costs. There is also a trend to integrdte the production, transmission, distribution and management/control of power into one and unified distributed system. To this end, Electric Power Hesearch Institute(EPRI) announced a new standard communication protocol called Inter-Control Center Protocol(ICCP).ICCP specifies the use of Manufacturing Message Specification(MMS) for services required by rccr in application layer and supports the communications between heterogeneous control centers. This paper presents the characteristics of MMS,ICCP and their relationship. Futherrnore, we implement the basic functional blocks of ICCP using MMS services under TCI/IP environments. Finally, we model a simple power system and apply the rccp protocol to this system in a window-based scheme, and finally show the operation and validation of this protocol.

  • PDF

Ubiquitous Sensors for Supervision of Power Facilities in Overhead Power Distribution Lines (가공배전선로의 전력설비 감시를 위한 유비쿼터스 센서)

  • Kil, Gyung-Suk;Park, Dae-Won;Kim, Il-Kwon;Choi, Su-Yeon;Park, Chan-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.59-65
    • /
    • 2007
  • Recently, ubiquitous sensor network(USN) techniques have been applied to electric power facility management. This paper dealt with the designed and fabricated ubiquitous sensors which monitor transformers and lightning arresters installed in overhead distribution systems. The sensors consist of a 8-[bit] microprocessor unit, a wireless communication nodule specified in IEEE 802.15.4, and associated electronics. A Rogowski coil was fabricated to measure load of transformer and surge current without saturation having good linearity up to 1000[A]. A zero-phase current transformer with a high relative permeability of $10^5$ at 180[Hz] was used to detect small leakage current of $50[{\mu}A]{\sim}1[mA]$ flowing lightning arrester, and the frequency bandwidth of the module is ranges from 12[Hz] to 1.24[kHz] at -3[dB].

A Study on the Implementation Issues for Demand-side Management of Energy Suppliers (에너지공급자 수요관리 개선방안 연구)

  • Kim, Hyeong-Jung;Son, Hag-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1566-1574
    • /
    • 2010
  • This paper presents an in-depth review for current status for demand-side management (DSM) investment of energy supplier and an useful prospect on the introduction of Energy Efficiency Resource Standards (EERS). According to the Article 9 of Rational Energy Utilization Act, Energy suppliers-Korea Electric Power Corporation (KEPCO), Korea Gas Corporation (KOGAS) and Korea District Heat Corporation (KDHC) prescribed by Presidential Decree-must establish and implement annual demand-side management investment plan to improve energy efficiency in production, transformation, transportation, storage and usage of corresponding energy and to reduce demand and green house gas emissions. In this paper, we examine the DSM programs of energy suppliers and the results of DSM investment in 2009, then we propose a reasonable solution for the development of DSM investment. Furthermore, in order to compare our situation, the case studies were conducted on EERS issues in England, Italy, France and U.S, such as establishing the energy saving target, selecting the target energy supplier, and penalty and incentive mechanisms. Throughout the case studies, this paper suggests the directions to the DSM investment planning of energy suppliers and the major issues to prepare EERS in Korea.

Design of Water Resource Planning System Utilizing Special Features in Mathematical Programming Data Structure (수리계획 모형 자료구조를 활용한 수자원 운영 계획 시스템의 설계)

  • Kim, Jae-Hee;Park, Youngjoon;Kim, Sheung-Kown
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.160-163
    • /
    • 2000
  • Due to the complexities of the real-world system, a water resource management program has to deal with various types of data. It appears that management personnel who has to use the program usually suffers from the technical burdens of handling large amount of data and understanding the optimization theory when they try to interpret the results. By combining the capabilities of database technology and modeling technique with optimization procedure we can develop a reliable decision supporting tool for multi-reservoir operation planning, which yields operating schedule for each dam in a river basin. We introduce two special data handling methodology for the real world application. First, by treating dams, hydro-electric power generating facilities and demand sites as separate database tables, the proposed data handling scheme can be applied to general water resource system in Korea. Second, by assigning variable names using predetermined key words, we can save searching time for identifying the moaning of the variables, so that we can quickly save the results of the optimization run to the database.

  • PDF

Development of Customer Oriented Load Management Software for Savings on Utility Bills in the Electricity Market

  • Chung, Koo-Hyung;Lee, Chan-Joo;Kim, Jin-Ho;Hur, Don;Kim, Balho-H.;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.42-49
    • /
    • 2007
  • For electricity markets to function in a truly competitive and efficient manner, it is not enough to focus solely on improving the efficiencies of power supply. To recognize price-responsive load as a reliability resource, the customer must be provided with price signals and an instrument to respond to these signals, preferably automatically. This paper attempts to develop the Windows-based load management system in competitive electricity markets, allowing the user to monitor the current energy consumption or billing information, to analyze the historical data, and to implement the consumption strategy for cost savings with nine possible scenarios adopted. Finally, this modeling framework will serve as a template containing the basic concepts that any load management system should address.

Analysis of Power Consumption for Embedded Software using UML State Machine Diagram (UML 상태 기계를 이용한 임베디드 소프트웨어의 소모 전력 분석)

  • Lee, Jae-Wuk;Hong, Jang-Eui
    • The KIPS Transactions:PartD
    • /
    • v.19D no.4
    • /
    • pp.281-292
    • /
    • 2012
  • A wide variety of smartphone applications is increasing the usage time of smartphone. Due to the increased time, it becomes difficult to providing stable services to users with limited battery capacity. The past works have been performed the power management of mobile device toward long-lasting battery development or low-power electric devices. However as the complexity of software embedded into system are increased, the research interests of the software power analysis is also increased. Among these studies on the software power analysis, model-based analysis technique is one of major interests because it can be able to analyze the power consumption before the development of source codes, then the analysis result can be used in the development of the software system, This paper suggests a model-based power analysis technique using UML state machine diagram. Our proposed technique estimates the power consumption by the simulation of Perti-net which is transformed from the state machine diagram.

A Study on Optimal Design of Hybrid System of New and Renewable Energy-Linked Microgrid (신재생에너지 연계형 마이크로그리드의 하이브리드시스템 최적 설계 연구)

  • Lee, Jae-Kyung;Han, Yong-Chan;Kwon, Sung-Gi;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.631-638
    • /
    • 2022
  • Microgrid, which enables the production and consumption of electricity to be done independently on a small scale, has been studied on one of the solutions of reinforcement for flexibility of electronic system. This study examined the application effect of new microgrid by applying hybrid battery in electric power storage device. We designed the system to highlight the advantage of each battery and complement the disadvantage by using hybrid system with Lithium-ion battery and interval Redox flow battery. It runs with lithium-ion battery during the initial startup while the Redox flow battery operates for a long time at the end of excessive period, and it enables a discharge of Lithium-ion and Redox flow battery at the same time when the load has a large output. We chose Maldives as a subject of this study for organizing and optimizing independent microgrid. Maldives is the country to accomplish 100% domestic electricity in South Asia, but the whole electric power is supplied through diesel generation imported fossil fuel. We organized and optimized microgrid for energy independence on Malahini island to solve Maldives energy cost problem and global energy environment matters. We analyzed the daily power supply and accumulated the power supply from September 18, 2018~February 11, 2019. The accumulated power supply was about 120.4 MWh and the daily power supply was about 800~1000 kWh. Based on the collected information, we divided the cases into three models which are only diesel generator, solar generator as well as diesel generator, and solar+ESS+diesel generator. We analyzed the amount of oil consumption compared to the cost of construction and power output. The result showed that solar+ESS+diesel generator was most economically feasible. As well, we obtained that our considering hybrid battery system reduced the fuel consumption for diesel power generation about 10~15%.

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

Analysis of New & Renewable Energy Application and Energy Consumption in Public Buildings (공공건축물의 신재생에너지 적용과 에너지 사용량 분석)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Kim, Hyung-Jin;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.153-161
    • /
    • 2012
  • This study conducted a survey and field investigation on the application of the Public Obligation System for new & renewable energy in public buildings, as well as energy consumption of each building according to their uses. The findings are as follows: (1) Since the introduction of the Public Obligation System (until June 30, 2011), there was average 1.4 new & renewable energy facilities established at 1,433 places. Preference for solar energy facilities was the highest at 57.8%. (2) The revised act sets the obligatory supply percentage of new & renewable energy for each public building: it is 9.0% for a tax office, 4.2% for a dong office, 8.2% for a public health center, and 12.6% for a fire station. All the public buildings except for fire stations failed to meet 10% expected energy consumption, a revised standard. (3) Energy consumption of each public building was 120.6TOE for a tax office, 124.3TOE for a dong office, 166.4TOE for a public health center, and 174.6TOE for a fire station. The energy consumption was comprised of 80% electric power, 18% urban gas, and 1% oil. (4) Electric power consumption per person in the room was high at a dong office, and fuel consumption per person in the room was high at a public health center. In addition, electric power consumption per unit space was high at a public health center, and fuel consumption per unit space was high at a fire station. (5) In all the four public buildings, power load had the highest basic unit percentage at average 55%, being followed by heating load (21.2%), cooling load (15%), and water heating load (7%). A tax office and fire station had 2% load due to cooking facilities.