• 제목/요약/키워드: Electric Power Loads

검색결과 364건 처리시간 0.033초

전력수요 탄력성에 따른 각 용도별 부하의 전력수요 영향 (The Effects of the Electric Power Demand for Each Loads Based the Electric Power Demand Elasticity)

  • 김문영;백영식;송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권12호
    • /
    • pp.568-574
    • /
    • 2001
  • The variations of real time electric power price in competitive electricity markets have influence on electric power demands of the consumers. The effects of the consumers for electric power price can be expressed the price elasticity coefficient of the power demand as a measurement. Residential, commercial, and industrial consumers with different characteristics cause the different price elasticity of the power demand due to changing the pattern of consumption. It is necessary that the effects of electric power demands as a function of elasticity coefficient for each loads should be analyzed in Korea which is processing deregulated electric market. Therefore, this paper calculate the elasticity coefficient of each loads and analysis the effects of electric power demands as a function of elasticity coefficient of inflexible and flexible consumers in competitive electricity market.

  • PDF

송전철탑의 내진성능평가 및 설계 풍하중과 지진하중의 비교 연구 (Seismic Performance Evaluation and a Comparative Study on the Design Wind and Earthquake Loads for Power Transmission Towers)

  • 황경민;전낙현;장정범;연관희;김태균
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.75-81
    • /
    • 2019
  • 본 연구에서는 최근 정부에서 제시한 표준설계 응답스펙트럼을 이용하여 송전용량, 높이 및 구조타입 등 다양한 변수를 고려한 송전철탑 24기를 선정하여 내진성능평가를 수행하였다. 또한, 정부에서 요구한 내진기준 상향 시 철탑의 설계에 미치는 영향을 검토하기 위하여, 현 설계 풍하중 및 개정 지진하중에 의해 발생되는 응력 및 단면력의 크기를 비교해 보았다. 내진성능평가 결과 대상 철탑들은 0.31~0.91g의 내진성능을 보유하고 있는 것으로 나타나, 2,400년 재현주기의 내진특등급 수준을 만족하였으며 내진안전성을 확보하고 있는 것으로 나타났다. 또한, 철탑의 지진에 의한 단면력은 풍하중에 의한 값의 33~82.5%로 나타나, 상향된 내진기준에서도 설계 풍하중이 지진하중보다 지배적임을 확인하였다.

배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구 (Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

연료전지 전력 시스템의 모델링 (The Modeling of Power System with PEM fuel cell)

  • 한경희;이화진;이나영;장혜영;이병송;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.239-241
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

송전망 이용요금 산정을 위한 발전-부하 배분 계산 방법 (Power Allocation of Individual Generators to Loads Using Graph Theory)

  • 최진산;김홍균;임성황;구본묵
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.422-424
    • /
    • 2002
  • Many methods about real power flow tracing have been suggested. Electric power industrials and organizations of the world use the method which is best suitable to themselves in practical aspects. In this paper we calculate the real power transfer between individual generators and loads referencing the method introduced by oversea's paper. It is considered to be significant to the wholesale competition market and transmission open access. Based on ac load flow solution and graph theory, the simulation on IEEE 30-bus system are carried out and the results are compared with that of oversea's paper. Also the simulation on the power system of Korea is carried out and the results are analyzed.

  • PDF

전기자동차 보급 전망에 따른 배전계통에서의 영향 평가 (Influence Evaluation of Electric Vehicle Load on Distribution Systems by the penetration rate of Electric Vehicle)

  • 김철우;한승호;송택호;정문규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.256-257
    • /
    • 2011
  • The development for Eco-friendly cars has been expanded as the concern about environmental pollution and a rise in gas prices. The Electric Vehicle(EV) and Plug in Hybrid Electric Vehicle(PHEV) are generally connected on distribution power systems to charge the traction batteries. The growing number of EV/PHEVs could have a effect on distribution power systems and result in overload of power utilities and power quality problems. In order to reduce the adverse effect on distribution power systems, the influence of electric vehicle loads should be evaluated. In this paper, the influence of electric vehicle loads is evaluated by using OpenDSS(Open Source Distribution System Simulator) according to the penetration rate of electric vehicle.

  • PDF

ELM을 이용한 주거용 부하의 부하모델링 기법 개발 (Development of ELM based Load Modeling Method for Residential Loads)

  • 정영택;지평식
    • 전기학회논문지P
    • /
    • 제61권1호
    • /
    • pp.29-34
    • /
    • 2012
  • Due to the increasing of nonlinear loads such as converters and inverters connected to the electric power distribution system, and extensive application of harmonic generation sources with power electronic devices, disturbance of the electric power system and its influences on industries have been continuously increasing. Thus, it is difficult to construct accurate load model for active and reactive power in environments with harmonics. In this research, we develop a load modeling method based on Extreme Learning Machine(ELM) with fast learning procedure for residential loads. Using data sets acquired from various residential loads, the proposed method has been intensively tested. As the experimental results, we confirm that the proposed method makes it possible to effective estimate active and reactive powers than conventional methods.

고품질 전력공급을 위한 독립형 마이크로그리드의 전압제어 해석 (Analysis of Voltage Control of Stand-Alone Microgrid for High Quality Power Supply)

  • 조종민;이학주;신창훈;차한주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.253-257
    • /
    • 2016
  • This paper analyzes voltage control method in order to supply high-quality power for stand-alone microgrid. Stand-alone microgrid is composed of battery bank, stand-alone PCS and controllable loads. The main role of stand-alone PCS is to supply high-quality power to loads as main source by using stable voltage method regardless of load conditions. In particularly, output voltage of stand-alone PCS gets severely unbalanced voltage under unbalanced loads. Fundamental positive and negative sequences are transformed by two coordinates transformation which are rotated in each opposite direction, respectively. Each fundamental d-q voltage is regulated by each fundamental PI control. In addition, low-order harmonics are compensated through resonant controllers. Performance of stand-alone microgrid is tested for feasibility, and it is verified that output voltage of THD is improved to 1% from 2.2% under 50 kW balanced load, and is improved to 1.1% from 2.6% under 50 kW unbalanced load.

원자력발전소 영구정지 시 소내전력공급계통 운영방안 (An Operating Strategy of In-house Power Supply Systems in the Permanent Shutdown Nuclear Power Plant)

  • 임희택;이광대;전당희;윤종현;주익덕
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.337-342
    • /
    • 2018
  • Spent fuel is moved from the reactor into the spent fuel pool when nuclear power plant permanently shutdown. The sole function of a permanently defueled facility is to store spent fuel in a quiescent state. The function of electric system and loads are reduced. It is necessary to establish an operating strategy of electric system in the permanent shutdown nuclear plant. This paper reviews required loads and design criteria considering transition to permanent shutdown. An operating strategy of onsite electric system is proposed considering decommissioning strategy and stage of defueled condition.

동적인 부하를 고려한 전력계통의 안정도 해석 (Power System Stability Analysis Considering Dynamic Loads)

  • 박지호;백영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.187-189
    • /
    • 2001
  • In this paper, we have simulated the transient stability of power system with dynamic loads. Dynamic load characteristics have an important influence on power system stability. In study of power system stability, motors form a major portion of the system loads. Induction motors and synchronous motors in particular form the workhorse of the electric power industry. Therefore modelling of motors is important in system stability. We investigate the effect of motors loads of Kwang Yang network with three phase fault.

  • PDF