• Title/Summary/Keyword: Electric Motors

Search Result 568, Processing Time 0.037 seconds

Characteristics of Dissipation Factor in High Voltage Motor Stator Insulations (고압전동기 고정자 권선 절연재료에서 유전정접 특성)

  • Mo, Il-Soon;Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2101-2103
    • /
    • 1999
  • The insulation condition of stator windings was measured by dissipation factor($tan{\delta}$) test in the six high voltage motors(rated 6.6kV) which had been in service for two years. The ${\Delta}tan{\delta}$ of motor D and E was higher than that of the rest motors. The specimens were drawn out from stator windings of the high voltage motor and their were analyzed using scanning electron microscope (SEM). SEM result shows that large voids are present in the interface both turn insulation and groundwall insulation.

  • PDF

An electric scooter development using BLDC motor (BLDC 전동기를 사용한 전기 스쿠터 개발)

  • Park, Seong-Wook;Lee, Deuk-Kee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.219-221
    • /
    • 2002
  • This paper presents an electric scooter development using blushless DC motor. In recent scooters was to develop for sport leisure and short transportation. Most of scooter are used petroleum gas. This gas scooter has disadvantage to pollute the air. Some of scooters have developed by DC motor which require a brush. However brushless motors have higher maximum speed and greater capacity, save maintenance labour and produce less noise. There is also greater freedom in planing the usage of brushless motors. In this paper we develop an electric scooter driving BLDC motor for design smart system and control speed of scooter with current reference signal to apply voltage to motor by means of three phase inverter. Using accelerator device we generate current reference to control speed and send the current to a MICOM by A/D converter. This MICOM produces the voltage signal and hall sensors signal and PWM controller drive three phase inverter to minimize error between the reference and an actual current.

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

Design of a Switched Reluctance Motor Driving an Electric Compressor for HEVs (하이브리드 자동차(HEV) 용 전동식 컴프레서 구동을 위한 SRM 설계)

  • Jeong, Yong-Hoe;Jeon, Yong-Hee;Kang, Jun-Ho;Kim, Jaehyuck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.620-625
    • /
    • 2013
  • This paper presents the design of a switched reluctance motor (SRM) for electric air conditioning compressors which are applied to hybrid electric vehicles (EVs). The motor for driving air conditioning compressor which is recently used on EV(electric vehicle) / HEV (hybrid electric vehicle) is PMSM(permanent magnet synchronous motor) or BLDCM(brushless DC motor). However disadvantage of motors that uses permanent magnets are vulnerable to high temperatures because of the demagnetization by the high temperature and the permanent magnet is expensive because of the high price of rare earth materials from China's monopoly. Therefore, in the automotive insustry is interested in the non-rare-earth motors. SRM has many advantages. it's resistant to high temperatures, price is cheaper, because there are no permanent magnets and winding in the rotor. Also it's high relability and efficiency, suitable for high-speed operation because of structure is simple. In this paper, the SRM, non-rare-earth motor, are designed, analyzed and experimented drive to replace an existing electric compressor drive motor.

Identification of Torque Characteristics in Capacitor Type Electric Motors and Reduction of Its Fluctuation Components (축전기형 전동기의 토크에 대한 특성분석 및 그 변동성분의 감소를 위한 연구)

  • 고홍석;신성수;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.826-834
    • /
    • 1994
  • The purpose of this study is to identify torque characteristics in capacitor type electric motors and to illustrate the effects of several design parameters on the fluctuating components of the motor torque. To do this, two revolving field theory and stationary reference frame theory were applied to derive governing equations for the torque generated by motor. For simulation studies, parameters of the motor components were measured under the conditions of no loading and locking. Based on these, effects of several design variables on the torque characteristics were analyzed and compared with the actual measurements, which were estimated indirectly by measuring the stator voltage and current. Then, some illustrative improvements in design are suggested by taking Taguchi method.

Fault Diagnosis of Induction Motors Using Data Fusion of Vibration and Current Signals (진동 및 전류신호의 데이터융합을 이용한 유도전동기의 결함진단)

  • 김광진;한천
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1091-1100
    • /
    • 2004
  • This paper presents an approach for the monitoring and detection of faults in induction machine by using data fusion technique and Dempster-Shafer theory Features are extracted from motor stator current and vibration signals. Neural network is trained and Hosted by the selected features of the measured data. The fusion of classification results from vibration and current classifiers increases the diagnostic accuracy. The efficiency of the proposed system is demonstrated by detecting motor electric and mechanical faults originated from the induction motors. The results of the test confirm that the proposed system has potential for real time application.

Optimal Design of 100W Class Single Phase Series Commutator Motor (100W급 단상직권 정류자 전동기의 최적설계)

  • Seo, Young-Taek;Lee, Woo-Suk;Gong, Jung-Sik;Oh, Chul-Soo;Bae, Sang-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.720-722
    • /
    • 2000
  • Single phase series commutator motors is widely used in various home appliances, such as vacuum cleaner, electric mixers, electrical tools, etc. This paper deals with the characteristics of single phase series commutator motors of which parameters varied with stator turns and stack length to find optimal electric and magnetic loading. We try to measure these data through the experiments with several prototype motors. The experimental results show some specific stator turns and stack length with which this motor has the highest efficiency.

  • PDF

Novel Flexible Printed Circuit Windings for a Slotless Linear Motor Design

  • Hsu, Liang-Yi;Yan, Guo-Jhih;Tsai, Mi-Ching
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Linear motors has been developed for factory automation, transportation applications, among other applications. As the trend toward compact sizes in micro electronic products progresses, the required motor drives in these applications need to be downsized with increased power densities. It appears that the winding of miniature linear motors is the most awkward part to be scaled down from conventional motor designs when miniaturizing. This paper presents an alternative design for slotless linear motors. A novel flexible printed circuit winding has been applied to obtain a simplified but qualified result. Having explained the prototyping and inspection, a discussion is given to examine the achievement of this study.

A Study on the Control to Compensate Position Sensor Error of the BLDC Motor in an Auxiliary Air Compressor (보조 공기 압축기 내 BLDC전동기의 위치센서 오류 보상 제어)

  • Kim, In-Gun;Hong, Hyun-Seok;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1639-1644
    • /
    • 2015
  • Auxiliary air compressor(ACM) applied to railroad cars is a device which controls amount of compressed air in order that pantographs can be mounted correctly on the roof of an electric train. Existing ACMs consist of dc motors and brushes wear out due to friction with a commutator. Therefore, continuous maintenance is required. However, three phase BLDC motors have higher power density compared to dc motors and the machine maintenance is not needed because electric commutation is possible. The three phase generally uses hall sensors to get position information and this enables the accurate control. This paper suggests an algorithm that compensates the errors occurred when the hall sensors have a breakdown for stable operation.