• 제목/요약/키워드: Electric Energy Management System

검색결과 318건 처리시간 0.031초

중전압 전선의 통계적 수명예측 계산과 응용 방법 (Statistical Life Expectancy Calculation of MV Cables and Application Methods)

  • 조종은;이온유;김상봉;김강식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.61-68
    • /
    • 2022
  • In this paper, the change history of various types of MV (Medium Voltage) cables was investigated. In addition, the statistical life expectancy of each type was calculated by using the operation data and the failure data. For cut-off year, 10 years was applied, and realistically applicable statistical life expectancy was calculated by correcting the cause of failure entered by mistake. The life expectancy of FR-CNCO-W was calculated as 51.2 years, CNCV-W 38.1 years, and CNCV 31.4 years and the overall average is 33.8 years. Currently, the life expectancy of TR CNCV-W is 29.4 years, but it is estimated that the lifespan will be extended if failure data is accumulated. As a result, it is expected that life expectancy results can be applied to Asset Management System (AMS) in the future.

데이터추론 및 클라우드 호스팅 기법을 활용한 최적 에너지 관리시스템 구현 및 성능분석 (Implementation and Performance Analysis of An Optimal Energy Management System Using Data Inference and Cloud Hosting Scheme)

  • 김경신;강문식
    • 전자공학회논문지
    • /
    • 제53권10호
    • /
    • pp.51-57
    • /
    • 2016
  • 본 논문에서는 에너지관리의 효율성 향상을 위하여 데이터 추론기법과 클라우드 호스팅 기법을 활용한 최적의 에너지 관리시스템을 제안하였다. 에너지 절약 및 효율적인 관리 기법이 에너지 생산 및 공급을 줄이기 위해서 매우 유용하다는 점에 대한 관심이 부각되고 있다. 에너지 관리시스템은 컴퓨터를 사용하여 합리적인 에너지 이용과 함께 쾌적하고 기능적인 업무 환경을 효율적으로 유지 보전하기 위한 제어 관리시스템을 의미한다. 제안 시스템은 에너지관리를 위해 다양한 설비를 제어하고, 에너지 소비 환경의 변화로부터 추론을 위한 데이터를 획득하며, 에너지를 사용하는 환경의 변화에 최적으로 적응함으로써 효율적인 에너지 관리가 가능하도록 구현되었다. 구현된 시스템의 성능을 평가하기 위해서 대상 설비에 대한 추론엔진이 작동하는 서버에서 월간 전력사용량을 고려한 실험을 실시하였고, 그 결과 우수한 성능을 보임을 확인하였다.

전력설비의 수명계산을 위한 통계적 분석기법의 활용 및 검증에 대한 연구 (A Study on the Application and Verification of Statistical Techniques for Calculating the Life of Electric Power Facilities)

  • 이온유;김강식;이홍석;조종은;김상봉;박기훈
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.9-14
    • /
    • 2022
  • Social infrastructure facilities such as production, transportation, gas and electricity facilities may experience poor performance depending on time, load, temperature, etc. and may require maintenance, repair and management as they are used. In particular, in the case of transformers, the process of managing them for the purpose of preventing them from failing is necessary because a failure can cause enormous social damage. The management of transformers should consider both technical and economic aspects and strategic aspects at the same time. Thus, it applies the Asset Management concept, which is widely used in the financial industry as an advanced method of transformer management techniques worldwide. In this paper, the operation and power outage data were secured for the asset management of the transformer for distribution, and the asset status was analyzed. Analysis of asset status using actual operation and power outage data is essential for assessing the statistical life and failure rate of the facility. Through this paper, the status of transformer assets for arbitrary A group distribution was analyzed, and the end of life and replacement life were calculated.

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰 (A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola)

  • 최철영;최웅철
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Development of Load Control and Demand Forecasting System

  • Fujika, Yoshichika;Lee, Doo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.104.1-104
    • /
    • 2001
  • This paper presents a technique to development load control and management system in order to limits a maximum load demand and saves electric energy consumption. The computer programming proper load forecasting algorithm associated with programmable logic control and digital power meter through inform of multidrop network RS 485 over the twisted pair, over all are contained in this system. The digital power meter can measure a load data such as V, I, pf, P, Q, kWh, kVarh, etc., to be collected in statistics data convey to data base system on microcomputer and then analyzed a moving linear regression of load to forecast load demand Eventually, the result by forecasting are used for compost of load management and shedding for demand monitoring, Cycling on/off load control, Timer control, and Direct control. In this case can effectively reduce the electric energy consumption cost for 10% ...

  • PDF

1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전 (Design and Self-sustainable Operation of 1 kW SOFC System)

  • 이태희;최진혁;박태성;유영성;남석우
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템 (Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator)

  • 윤보경;이준영;정지훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

재실감지 센서와 스마트 플러그를 이용한 에너지 절약 시스템 (Energy Saving System using Occupancy Sensors and Smart Plugs)

  • 정경권;서춘원
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.161-167
    • /
    • 2015
  • 본 논문에서는 첨단 주택에서 가전기기 에너지 절약을 위한 재실 기반 에너지 절약 시스템을 제안하였다. 제안된 시스템은 센싱 시스템과 홈 게이트웨이 시스템으로 구성된다. 센싱 시스템은 사람의 움직임을 감지하는 PIR 센서를 장착한 무선 센싱 노드와 CT센서를 이용하여 전류 사용량을 측정하고 무선으로 전달하는 스마트 플러그로 구성된다. 스마트 플러그를 이용하여 가전기기의 전류 소모량을 측정하고, 방과 문에 설치한 재실 감지 센서를 이용하여 거주자의 재실 유무를 확인하였다. 제안한 시스템은 부재 공간의 불필요한 전기 에너지 사용량을 스위치를 끔으로서 절약한다. 실험 결과 재실 기반으로 전기 에너지를 절약한다면 약 34%를 절약할 수 있음을 확인하였다.