• 제목/요약/키워드: Electric Energy Management System

검색결과 318건 처리시간 0.027초

전기다리미의 발화원인 판정에 관한 현상학적 고찰 (A Phenomenological Review on the Decision on the Cause of Ignition of Electric Iron)

  • 문용수;공하성;이종화
    • 대한안전경영과학회지
    • /
    • 제11권1호
    • /
    • pp.43-49
    • /
    • 2009
  • This study set three kinds of situation and observed the various states such as carbonization by experimenting damages by fire of electric iron. The results of this study are as follows: The fire did not occurred when the unpowered iron over mattress and cotton shirts was com busted completely by external flame because the temperature of surface of soleplate and mattress did not reach the minimum ignition energy and when the powered electric iron over mattress and cotton shirts was left for an hour with its temperature dial set to high because the temperature of combustibles did not reach the minimum ignition energy. The fire occurred when the electric iron in which the outer box, bi-metal switch, and temperature fuse were removed over mattress and cotton shirts was powered by through heater terminal, and then the electric iron, mattress, and cotton shirts were combusted by the fallen combustibles because the temperature of combustibles reached to the minimum ignition energy with the help of active transfer of heat.

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Home Energy Management System for Interconnecting and Sensing of Electric Appliances

  • Cho, Wei-Ting;Lai, Chin-Feng;Huang, Yueh-Min;Lee, Wei-Tsong;Huang, Sing-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권7호
    • /
    • pp.1274-1292
    • /
    • 2011
  • Due to the variety of household electric devices and different power consumption habits of consumers at present, general home energy management (HEM) systems suffer from the lack of dynamic identification of various household appliances and a unidirectional information display. This study presented a set of intelligent interconnection network systems for electric appliances, which can measure the power consumption of household appliances through a current sensing device based on OSGi platform. The system establishes the characteristics and categories of related electric appliances, and searches the corresponding cluster data and eliminates noise for recognition functionality and error detection mechanism of electric appliances by applying the clustering algorithm. The system also integrates household appliance control network services so as to control them according to users' power consumption plans or through mobile devices, thus realizing a bidirectional monitoring service. When the system detects an abnormal operating state, it can automatically shut off electric appliances to avoid accidents. In practical tests, the system reached a recognition rate of 95%, and could successfully control general household appliances through the ZigBee network.

물류센터의 에너지 효율 개선 방안에 관한 연구 (A Study on the Improvement of Energy Efficiency in Warehouses)

  • 선종근;류호상
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.66-72
    • /
    • 2012
  • The main sources of energy consumption in warehouses are MHE(Material Handling Equipment), HVAC(Heating, Ventilating and Air Conditioning) and Lighting. Warehouses in advanced countries raise energy efficiencies with energy consumption diagnosis, technology development and systematic management and improvements for MHE, HVAC and Illuminating, etc. They have managed illuminating system, air conditioning, motor driven system, air circulation method, dock facility, layout, AS/RS, conveyor system and battery management, etc. Ansong Pyeongtaek area investigation resulted that 43.9[%] of enterprises are managing partly energy consumption source. But the data resulted with not substantial management of energy consumption but passive management for only electric bill curtailment. Therefore through survey research & visiting interviews of some companies in Ansong Pyeongtaek area, we understood the status of energy consumption source management and proposed energy efficiency methods on the basis of that results.

에너지 관리(管理)시스템의 사업관리(事業管理) (PROJECT MANAGEMENT FOR ENERGY MANAGEMENT SYSTEMS)

  • 이규선;윤갑구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1983년도 하계학술회의강연.논문초록집
    • /
    • pp.174-176
    • /
    • 1983
  • This paper explains about general considerations and project management for a modern electric utility EMS/SCADA system. This paper also attempts to help engineers in the following situation: They are given the task of specifying, buying and installing a EMS/SCADA system. When do they start? What tools/texts/guidelines are available to help them out? If it is a large system, methodical project management is necessary. What are the critical tasks to be undertaken? When should they been done and how does their timing impact the whole project.

  • PDF

가공송전 전선 자산데이터의 정제 자동화 알고리즘 개발 연구 (Automatic Algorithm for Cleaning Asset Data of Overhead Transmission Line)

  • Mun, Sung-Duk;Kim, Tae-Joon;Kim, Kang-Sik;Hwang, Jae-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.73-77
    • /
    • 2021
  • As the big data analysis technologies has been developed worldwide, the importance of asset management for electric power facilities based data analysis is increasing. It is essential to secure quality of data that will determine the performance of the RISK evaluation algorithm for asset management. To improve reliability of asset management, asset data must be preprocessed. In particular, the process of cleaning dirty data is required, and it is also urgent to develop an algorithm to reduce time and improve accuracy for data treatment. In this paper, the result of the development of an automatic cleaning algorithm specialized in overhead transmission asset data is presented. A data cleaning algorithm was developed to enable data clean by analyzing quality and overall pattern of raw data.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

A new controller for energy management system of EV

  • Shujaat Husain;Haroon Ashfaq;Mohammad Asjad
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.145-153
    • /
    • 2022
  • Recent concerns about rising fuel prices and greenhouse gas emissions have focused attention on alternative energy sources, particularly in the transport sector. Transportation consumes 40% of overall fuel usage. As a result, a growing majority of researches on Electric Vehicles (EVs) and their Energy Management Systems (EMS) have been done. In order to enhance the performance and to meet the needs of drivers, more information regarding the EMS is needed. A new Energy Management System is proposed using a FOPID controller. To put the concept into practice, state equations are utilised. The fifth-order state-space model under study is a linked model with several inputs and outputs and the transfer matrices are calculated for decoupling the system. Utilizing these transfer matrices to decouple the system and FOPID controller is used to tune the system. The tuned parameters are minimized using a Particle Swarm Optimization (PSO) approach with Integral Time Absolute Error (ITAE) as the goal. When the suggested FOPID system's results are compared to those of PID-controlled systems, a sizable improvement is observed, which is explained by the results.

차세대 배전지능화시스템 개발을 위한 지리정보시스템 적용 (Geographic Information System for Developing Advanced Distribution Management System)

  • 김동욱;조성호;서호진;박영배
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.67-74
    • /
    • 2019
  • 최근 신재생 분산전원의 투입 확대로 배전계통 내 변동성이 커짐에 따라서 안정적인 배전계통 운영에 대한 우려가 커지고 있는 상황이다. 미래 배전계통의 효율적인 관리를 위해서 새로운 시각화 기술을 이용한 배전계통 운영시스템의 개선이 필요하다. 본 논문에서는 배전분야의 GIS 도입 현황과 관련 기술 동향을 기술하고, 배전계통 운영을 위해 GIS시스템의 필요성과 GIS기술 도입 시 해결해야할 문제점을 분석한다.

전기차 사용 후 배터리 재사용 산업 육성을 위한 정책 제안 (Policy Suggestion for Fostering the Industry of Using End of Life EV Batteries)

  • 이희동;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, we proposed the necessity of reusing the battery industry after domestic use, preparing legal arrangements by step for recycling, clarifying responsible materials by processing stage, and establishing infrastructure and screening diagnostic rating system. The purpose of this study is to establish a life cycle integrated management system for electric vehicle batteries and to find suitable ways for improving the lifespan of electric vehicle batteries, reuse, and recycling in stages to avoid other environmental pollution problems due to batteries after using electric vehicles used to reduce environmental pollution due to climate change.