• 제목/요약/키워드: Electric Charge-discharge

검색결과 241건 처리시간 0.027초

A Study on the Temporal Behavior of the Wall Voltage in a surface-type AC panel

  • Kim, Jung-Hun;Lee, Jun-Hak;Choi, Young-Wook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.175-176
    • /
    • 2000
  • Electric fields and the wall voltages in a surface-type AC PDP cell were measured using a Laser Induced Fluorescence Spectroscopy. For the condition of He 100Torr, 200V sustain voltage and 50kHz sustain frequency, the wall voltage dropped from about 50V to about -75V within $1{\mu}sec$ after the main discharge. And the wall voltage decreased with the rate of $10.8V/{\mu}sec$ due to the accumulation of the space charges after $1{\mu}sec$. But when the operating pressure was 40Torr, it increased with the rate of $4.5V/{\mu}sec$ because the diffusion effect of the wall charge on MgO surface was more dominant than the accumulation effect of the space charges. During the pulse-off period, the wall voltage decreased slightly due to the diffusion of the wall charge. When the sustain voltage was 250V, the self-erasing discharge occurred, and the absolute value of the wall voltage decreased rapidly just after the pulses were off, which was caused by the accumulation of the charges generated by the self-erasing discharge.

  • PDF

무수은 제논 EEFL의 전기적 특성 (Electric Properties of Mercury-free Xe EEFL)

  • 이성진;김남군;이종찬;박노준;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.650-657
    • /
    • 2007
  • This paper had mentioned about CCP light source application for increasing the efficiency of Xe lamp the mercury-free lamp. In order to increase the efficiency of Xe EEFL, we designed and manufactured the lamp used by mixture gas of Xe, Ne and He. Also, we have analyzed the electrical and optical properties with the firing voltage, sustain voltage, paschen's curve, wall charge, and capacitance. As a result, the firing voltage decreased by increasing the ration of mixture gas. and, It is owing to include the gas with high ionization energy. The firing voltage decreased in condition happening the penning effect, Because the ion of metastable state created from penning effect, Which can encourage the ionization phenomena. Also, the wavelength of 467.12 is increase. because of the energy transition in the wavelength of 147 nm. therefore, we can know about the affection of phosphor with UV emission properties. Through an experiment, Xe 100 % and Xe 75 % confirmed same spectrum properties by each mixture gas ratio. In the case of Xe 50 %, spectrum properties appeared Xe discharge and Ne-He discharge. That analyzed an electrical and optical properties. Therefore, confirmed that is excellent because properties of firing voltage, wall charge, capacitance in Xe 50 %, Ne : He = 9 : 1. We offered parameter in inverter manufacture and lamp manufacture by electrical and optical properties.

소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향 (Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries)

  • 박진수
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

신경회로망을 이용한 전기자동차용 바테리 잔존용량계 (State of Charge Indicator for Electric Vehicle using Neural Networks)

  • 변성천;김의선;류영재;임영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.560-562
    • /
    • 1998
  • A new approach to developing battery SOC indicator for electric vehicle is discussed in this paper. One of the most difficult problems associated with the development of electric vehicle is the battery indicator which reliably informs the state of charge(SOC) of the battery to the driver. And the condition to be satisfied with SOC indicator installed on the electric vehicle is that it should be used under frequently variable load. A new method to determining SOC using neural networks(NN) is proposed to satify the condition. The training data of NN are obtained by using mathematical model of lead-acid battery, and calculating discharge currents and terminal voltages while battery discharges with constant current. The 3-layered NN with back propagation algorithm is used Simulation results show that the proposed method is appropriate as SOC indicator of the battery.

  • PDF

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • 전기화학회지
    • /
    • 제4권4호
    • /
    • pp.152-159
    • /
    • 2001
  • 전기자동차의 성능은 축전지의 성능에 의해 크게 좌우된다. 그러므로 우수한 성능과 높은 신뢰성을 가진 전기자동차를 개발하기 위해서는 다양한 운영조건에서 축전지가 최대의 성능을 가질 수 있게 잘 관리되어야 한다. 축전지의 성능 향상은 축전지 관리 시스템(BMS)의 적용에 의해 달성될 수 있으며 BMS는 축전지의 상태 감시뿐만 아니라 축전지의 충전 및 방전을 최적화하는 중요한 역할을 수행한다. 이 연구에서는 전기자동차에 적용된 니켈 메탈하이드라이드 전지(Ni/MH battery) 이용을 최대화하기 위한 역할을 수행하는 BMS를 개발하였다 이 시스템은 축전지의 충전 및 방전 제어, 과충전 및 과방전 방지, 잔존용량 계산 및 표시, 안전관리 및 열관리 등의 기능을 가진다. 금번 개발된 BMS를 대우자동차와 고등기술원이 공동 개발한 DEV5-5전기자동차에 장착하여 시험을 수행하였다. 이 차량에는 파나소닉사의 12V-95Ah사양의 Ni/MH battery 18모듈이 적용되었다 시험결과 이 시스템은 $3\%$ 이내의 높은 정확성을 가지고 있으며 우수한 신뢰성을 나타내었다. 이 BMS는 전기자동차의 신뢰성과 안전도뿐만 아니라 Ni/MH battery pack의 성능과 수명을 향상시킬 것이다.

유전체 장벽 방전내에서 오존발생 특성 (Ozone Generation Characteristics in Dielectric Barrier Discharge)

  • 이형호;조국희;김영배;서길수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권12호
    • /
    • pp.673-678
    • /
    • 2000
  • The dielectric barrier discharge(DBD) is a common method to create a nonthermal plasma in which electrical energy is used to create electrons with a high average kinetic energy. The unique aspect of dielectric barrier discharges is the large array of short lifetime(10ns) silent discharges created over the surface of the dielectric. A silent discharge is generated when the applied voltage exceeds the breakdown voltage of the carrier gas creating a conduction path between the applied electrode and grounded electrode. As charge accumulates on the dielectric, the electric field is reduced below the breakdown field of the carrier gas and the silent discharge self terminates preventing the DBD cell from producing a thermal arc. In fact, the most significant application of dielectric barrier discharges is to generate ozone for contaminated water treatment. Therefore, experiments were perfomed at 1∼2[bar] pressure using a coaxial geometry single dielectric barrier discharge for ozone concentrations and energy densities. The main result show that the concentration and efficiency of ozone are influenced by gas nature, gas quantity, gas pressure, supplied voltage and frequency.

  • PDF

모의 GIS 내부에 도전성 이물질 존재시 부분방전 진전에 따른 전자파 측정에 의한 절연진단연구 (A Study on the Insulation Diagnosis to measure Radiated Electromagnetic Waves with Partial Discharge Propagation at being of Conductive Particle in model GIS)

  • 박광서
    • 조명전기설비학회논문지
    • /
    • 제22권1호
    • /
    • pp.157-164
    • /
    • 2008
  • 본 논문에서는 모의 GIS 내부에 도전성 파티클을 놓아둠으로써 전하의 축적과 전계의 집중이 용이하도록 하여 부분방전을 모의하였다. 이때 부분방전 발생과 진전에 따른 방사전자파를 스펙트럼 분석기와 EMI.EMC 측정용 안테나($30{\sim}2000[MHz]$)를 사용하여 측정 분석하였다. 모의 GIS 내부에 도전성 파티클 존재에 따른 부분방전의 검출과 방진전전 과정의 판단을 위한 절연진단의 방법으로써 본 논문에서 제안한 측정 주파수의 대역의 분리와 데이터 측정과 분석법을 이용하면 부분방전의 검출과 방전과정의 판단이 가능함을 확인하였다.

n-MOSFET 정전기 방전 분석 (Electrostatic Discharge Analysis of n-MOSFET)

  • 차영호;권태하;최혁환
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.587-595
    • /
    • 1998
  • Transient thermal analysis simulations are carried out using a modeling program to understand the human body model HBM ESD. The devices were simulated a one-dimensional device subjected to ESD stress by solving Poison's equation, the continuity equation, and heat flow equation. A ramp rise with peak ESD voltage during rise time is applied to the device under test and then discharged exponentially through the device. LDD and NMOS structures were studied to evaluate ESD performance, snap back voltages, device heating. Junction heating results in the necessity for increased electron concentration in the space charge region to carry the current by the ESD HBM circuit. The doping profile adihacent to junction determines the amount of charge density and magnitude of the electric field, potential drop, and device heating. Shallow slopes of LDD tend to collect the negative charge and higher potential drops and device heating.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

유기전해질에 따른 EDLC의 전기화학적 특성 (Electrochemical Characteristics of EDLC with various Organic Electrolytes)

  • 양천모;이중기;조원일;조병원;임병오
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.113-117
    • /
    • 2001
  • 탄소계 전극을 사용하는 EDLC(Electric Double Layer Capacitor)용의 축전용량과 충방전속도는 전해질의 종류, 충방전 조건 그리고 탄소계 물질의 물리화학적 성질에 따라 크게 달라질 수 있다. 이에 본 연구에서는 dip coating method에 의해 제조된 EDLC용 활성탄소 전극에서 유기 전해질의 종류를 달리하여 충방전 실험과 전기화학적인 실험을 시행하였다. 또한 충전전류밀도와 방전전류밀도의 변화에 따른 비축전 용량의 변화를 조사하였고, 최적 유기전해질의 조건에서 leakage current 특성, 자가방전 특성 그리고 시간전압곡선을 기존의 $1M-Et_4NBF_4/PC$와 비교하였다 활성탄, 소전극으로 비표면적이 $2000m^2/g$인 MSP-20을 사용하고 유기전해질로는 $1M-LiPF_6/PC-DEC(1:1)$를 사용한 EDLC에서 130 F/g 정도의 우수한 비축전 용량을 나타내었고 저항면에서도 가장 낮은 수치를 나타내었다 $1M-LiPF_6/PCDEC(1:1)$를 사용한 EDLC는 15분동안 0.0004A의 낮은 leakage current와 100시간 경과 후 0.8V의 우수한 자가 방전 특성 그리고 IR-drop이 적은 선형의 시간-전압곡선을 보여주었다.