• 제목/요약/키워드: Electical Resistivity

검색결과 7건 처리시간 0.023초

Electrical Resistivity and Fracture Toughness of SiC-ZrB2

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.400-403
    • /
    • 1999
  • The mechanical and electrical properties of hot-pressed and annelaed $\beta$-SiC+39vol.% $ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$(6:4 wt%). In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$ grains were observed between $\beta$-SiC and $ZrB_2$. The properties of the $\beta$-SiC+39vol.%$ZrB_2$ composites with 4wt% $Al_2O_3+Y_2O_3$ at R.T. are as follows: fracture toughness is 6.37 MPa.m1/2, electical resistivity is $1.51\times10^{-4}\Omega \cdot\textrm{cm}$ and the relative density is 98.6% of the theoretical density. The fracture toughness of the $\beta$-SiC+39 vol.% $ZrB_2$ composites were weakly decreased with increasing amount of $Al_2O_3+Y_2O_3$ additives. Internal stresses due to the difference of $\beta$-SiC and $ZrB_2$ thermal expansion coefficient and elastic modulus mismatch appeared to contribute to fracture toughening in $\beta$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites.

  • PDF

증착변수 및 열처리 효과가 스퍼터링된 ZnO 박막의 성장 특성 및 전기비저항에 미치는 영향 (Effect of Depositon Variables and Heat-treatment on the Growth Charateristics and Electrical Resistivity of ZnO Thin Film by Sputtering)

  • 하재수;김광호
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.733-739
    • /
    • 1998
  • C-axis oriented zinc oxide thin films were deposited on Cornign 1737 glass substrate by an rf magnetron sputtering technique. The effects of deposition parameters and post heat-treatment on the crystallinity and electical properties of ZnO films were investigaed. As-deposited ZnO films showed the strong c-axis growth and excellent crystallinity under the deposition conditions as follows: substrate temperature 350$^{\circ}C$ ; growth and excellent crystallinity under the deposition conditions as follows ; substrate temperature 350$^{\circ}C$ rf power 75W ; gas pressure 6m Torr; percentage of oxygen 50% The higher heat-treating temperatue was the stronger c-axis growth and the better crystallinity of the deposited ZnO films were. The resistivity of ZnO films was significantly affected by deposition parameters and post heat-treatment. With increasing increased. After post heat-treating at 400$^{\circ}C$ in air the resistivity of ZnO films increased but post heat-treat-ing temperature 500$^{\circ}C$ rather diminished the film resistivity.

  • PDF

MATERIAL AND ELECTICAL CHARACTERISTICS OF COPPER FILMS DEPOSITED BY MATAL-ORGANIC CHEMICAL TECHNIQUE

  • Cho, Nam-Ihn;Park, Dong-Il;Nam, H. Gin
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.803-808
    • /
    • 1996
  • Material and electrical characteristies of copper thin films prepared by metal organic chemical vapor deposition (MOCVD) have been investigated for interconnection applications in ultra large scale integration circuits (ULSI). The copper films have been deposited a TiN substrates using a metal organic precursor, hexafluoro acetylacetonate trimethyvinylsilane copper, VTMS(hfac)Cu (I). Deposition rate, grain size, surface morphology, and electrical resistvity of the copper films have been measuredfrom samples prepared at various experimental conditions, which include substrate temperature, chamber pressure, and carrier gas flow rate. Results of the experiment showed that the electrical property of the copper films is closely related to the crystallinity of the films. Lowest electrical resistivity, $2.4{\mu}{\Omega}.cm$ was obtained at the substrate temperature of $180^{\circ}C$, but the resistivity slightly increased with increasing substrate temperature due to the carbon content along the copper grain boundaries.

  • PDF

La$_{1.6}$Ca$_{1.4}$Mn$_2$O$_{7.07}$의 전기전도특성 (Electical Transport Properties of La$_{1.6}$Ca$_{1.4}$Mn$_2$O$_{7.07}$ System)

  • 정우환
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.843-847
    • /
    • 1999
  • The dc resistivity dc magnetization and thermopower of layered perovskite La1.6Ca1.4Mn2O7.07 have been studied. The ceramic sample of La1.6Ca1.4Mn2O7.07 undergoes the metal-insulator transition at 120K while a first-order phase transition from a ferromagnetic phase to a paramagnetic phae is observed at 260 K=TC This behavior is quite different from that of the well-known double exchange ferromagnets such as La1-xCaxMnO3 This phenomenon could be understood by considering the effects of the anisotropic double exchange interaction caused by two dimensional Mn-O-Mn networks in this materials. The dc magnetization between 120K and 250K is nearly constant and decreases rapidly with increasing temperature above 250K The measurements of dc resistivity and thermopower indicate that Zener polaron hopping conduction takes place above 260 K.

  • PDF

RTA 후속 열처리에 따른 ZnO/Cu/ZnO 박막의 투명전극 및 발열체 특성 연구 (Effect of Rapid Thermal Annealing on the Transparent Conduction and Heater Property of ZnO/Cu/ZnO Thin Films)

  • 이연학;김대일
    • 열처리공학회지
    • /
    • 제36권3호
    • /
    • pp.115-120
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin film deposited on the glass substrate with DC and RF magnetron sputtering was rapid thermal annealed (RTA) and then effect of thermal temperature on the opto-electical and transparent heater properties of the films were considered. The visible transmittance and electrical resistivity are depends on the annealing temperature. The electrical resistivity decreased from 1.68 × 10-3 Ωcm to 1.18 × 10-3 Ωcm and the films annealed at 400℃ show a higher transmittance of 78.5%. In a heat radiation test, when a bias voltage of 20 V is applied to the ZCZ film annealed at 400℃, its steady state temperature is about 70.7℃. In a repetition test, the steady state temperature is reached within 15s for all of the bias voltages.

순환자원 활용 지반차수재의 노후저수지 보강 적용사례 및 성능검증에 관한 연구 (A Study on Application and Performance Verification of Aged Reservoir Reinforcing Method using Ground Injection Material of Utilizing Circulation Resources.)

  • 박성훈;서세관;송상훤
    • 한국농촌건축학회논문집
    • /
    • 제22권3호
    • /
    • pp.17-24
    • /
    • 2020
  • Reservoirs, which make up most of South Korea's reservoirs, are located in rural areas. In the case of rural reservoirs, about 75% have been reported over 50 years old aged reservoirs constructed before the 1960s. Reservoirs are important facilities that store and supply water necessary for daily life. However, if it is destroyed, the reservoir can cause a lot of damage, so continuous management is necessary. As a method for strengthening old reservoirs, a method using cement has been widely applied. However, OPC is a product that uses a lot of carbon dioxide and natural resources. Therefore, the amount of cement should be reduced. Against this background, in this study, the ground injection material of utilizing circulation resources was applied to the site. Applied reservoirs have been around for 75 years and leaks have occurred in some sections. The application method was constructed in two rows, up to a depth of 12m. After reinforcement, the electrical resistivity test was conducted three times. As a result, similar resistance was shown at 1 month after construction. And after 6 months, the saturation area decreased. And the performance after reinforcing the aged reservoir was examined. As a result of the review, this study confirmed that the applicability was equivalent to that of OPC, and the excellent performance of reinforcing the aged reservoir was shown.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF