• Title/Summary/Keyword: Elbow pipe

Search Result 96, Processing Time 0.026 seconds

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

Limit State Evaluation of Elbow Components Connected with Flexible Groove Joints (유동식 그루브 조인트로 연결된 엘보 요소의 한계상태 평가)

  • Sung-Wan Kim;Da-Woon Yun;Bub-Gyu Jeon;Dong-Uk Park;Sung-Jin Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.91-99
    • /
    • 2024
  • Piping systems are crucial facilities used in various industries, particularly in areas related to daily life and safety. Piping systems are fixed to the main structures of buildings and facilities but do not support external loads and serve as non-structural elements performing specific functions. Piping systems are affected by relative displacements owing to phase differences arising from different behaviors between two support points under seismic loads; this can cause damage owing to the displacement-dominant cyclic behavior. Fittings and joints in piping systems are representative elements that are vulnerable to seismic loads. To evaluate the seismic performance and limit states of fittings and joints in piping systems, a high-stroke actuator is required to simulate relative displacements. However, this is challenging because only few facilities can conduct these experiments. Therefore, element-level experiments are required to evaluate the seismic performance and limit states of piping systems connected by fittings and joints. This study proposed a method to evaluate the seismic performance of an elbow specimen that includes fittings and joints that are vulnerable to seismic loads in vertical piping systems. The elbow specimen was created by connecting straight pipes to both ends of a 90° pipe elbow using flexible groove joints. The seismic performance of the elbow specimen was evaluated using a cyclic loading protocol based on deformation angles. To determine the margin of the evaluated seismic performance, the limit states were assessed by applying cyclic loading with a constant amplitude.

Development of Optimal Design Program of Air-Coal Pneumatic Conveying System to Enhance Combustion Efficiency (연소효율 향상을 위한 공기-미분탄 수송배관장치의 최적화 설계 프로그램 개발)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • This study describes to analyze the pressure drop characteristics for the air-particle flow in pneumatic coal powder conveying system and to proper design of the orifice located in the system to enhance combustion efficiency in furnace of the coal-fired power plant. Usually the system consists of the straight type pipe, the curved type pipe and the elbow, which cause increase of the pressure drop. In this study, the pressure drop arised in the system with straight and curved type pipes is analyzed with interactions of motion of air flow and particles. It is realized that total pressure drop increases with increasing of the pipe length and the angle of curved type pipe due to friction loss of air and particles in the system. The program for analysis of the pressure drop and optimum design of the orifice size for air flow control in the system is developed. The result is also compared with the existing system.

  • PDF

Out-of-Plane Vibrations of Angled Pipes Conveying Fluid (내부유동을 포함한 굴곡된 파이프의 외평면 진동해석)

  • Pak, chol-Hui;Hong, Sung-Chul;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.306-315
    • /
    • 1991
  • This paper considered the out-of-plane motion of the piping system conveying fluid through the elbow connecting two straight pipes. The extended Hamilton's principle is used to derive equations of motion. It is found that dynamic instability does not exist for the clamped-clamped, clamped-pinned and pinned-pinned boundary conditions. The frequency equations for each boundary conditions are solved numerically to find the natural frequencies. The effects of fluid velocity and Coriolis force on the natural frequencies of piping system are investigated. It is shown that buckling-type instability may occur at certain critical velocities and fluid pressures. Equivalent critical velocity, which is defined as a function of flow velocity and fluid pressure, are calculated for various boundary conditions.

  • PDF

A Study on the Noise and Condensation Characteristics of Complex Structure Drainage Pipe Materials (복합 구조형 배수 배관재의 소음 및 결로 특성에 관한 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2016
  • The present study investigates noise and condensation characteristics of polyvinyl chloride (PVC), which is widely used for drainage piping materials, complex double structure by comparing to those of PVC single structure piping materials. In addition, effects of insulation on drainage noise has been measured experimentally. As the results of the experiments, noise reduction effect of PVC complex double structure is superior to that of PVC single structure in terms of elbow and vertical piping materials which are employed for drainage pipes of toilet bowls and bathtub. The insulation barely have effect on the noise reduction in case of the PVC single structure since there is almost no changes in noise occurrence even though the insulation is applied on both elbow and vertical piping materials. Temperature differences between inside and outside of the pipes have been measures for the PVC single and complex double structures as well. In consequence, outside temperature of the PVC complex double structure is higher than that of the PVC single structure. The condensation occurrence time of the PVC complex double structure shows a distinct difference from that of the PVC single structure, thus, the PVC complex double structure has outstanding effect on preventing the condensation.

Hydraulic Tests of Fuel Pump for 75-ton class Liquid Rocket Engines (75톤급 로켓엔진용 연료펌프의 수력성능시험)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.78-81
    • /
    • 2009
  • A series of hydraulic tests of a fuel pump are performed using water at a room temperature. The pump is under development for 75-ton class liquid rocket engines of the open-loop gas generator type. According to the test results, the fuel pump satisfies its design requirement and its head and efficiency at the design flowrate are higher than the expected value by the computational analysis. Also, it is found that the pressure at the rear bearing outlet is higher than expected because the inlet of bypass pipe line is narrow. Furthermore, the flowrate of the secondary flow is estimated using the pressure difference of the elbow of the bypass pipe line.

  • PDF

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant (공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가)

  • Jeong, Seong Yong;Yoon, Kee Bong;Duyet, Pham Van;Yu, Jong Min;Kim, Ji Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.

An Experimental Study on the Noise Reduction for Toilet Stool Plumbings in Apartment Bathroom (공동주택 욕실의 변기 배수소음 저감에 관한 실험적 연구)

  • Baek, Eun-Sun
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.57-62
    • /
    • 2007
  • Recently Among indoor noises plumbing noise from supply and drain water pipe is being pointed out as a annoying noise following to floor impact noise, and it is increasing the rate to point the noise due to the following several reasons: water pressure, vibration by fabricated structures and direct noise propagation from upper floor through ceiling This study aims to analyse the characteristics of toilet stool plumbing noise in apartment bathroom which are generated by crossing plumbings and elbows. And it analyse the effect of noise reduction by soundproofing and insulations which are covered at crossing plumbings. And also analyse the characteristics of noise about a type of elbows, crossing plumbing and result of dB(A). At last it provide a fundamental data for the purpose of reduction of plumbing noise in apartment.

Analysis of the Fatigue Crack Growth in Pipe Using Finite Element Alternating Method (배관 피로균열 성장 해석을 위한 유한요소 교호법의 적용)

  • Kim, Tae-Soon;Park, Sang-Yun;Park, Jai-Hak;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.124-129
    • /
    • 2004
  • Finite element alternating method have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrarily shaped three dimensional cracks, the finite element alternating method is extended. The cracks are modeled as a distribution of displacement discontinuities by the displacement discontinuity method and the symmetric Galerkin boundary element method. Applied the proposed method to three dimensional crack included in the elbow, the efficiency and applicability of the method were demonstrated.

  • PDF