• 제목/요약/키워드: Elbow pipe

검색결과 96건 처리시간 0.023초

변형각의 측정 위치에 따른 6인치 탄소강관엘보의 파괴 기준 (Failure Criteria of a 6-Inch Carbon Steel Pipe Elbow According to Deformation Angle Measurement Positions)

  • 윤다운;전법규;장성진;박동욱;김성완
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.13-22
    • /
    • 2022
  • This study proposes a low-cycle fatigue life derived from measurement points on pipe elbows, which are components that are vulnerable to seismic load in the interface piping systems of nuclear power plants that use seismic isolation systems. In order to quantitatively define limit states regarding leakage, i.e., actual failure caused by low-cycle fatigue, in-plane cyclic loading tests were performed using a sine wave of constant amplitude. The test specimens consisted of SCH40 6-inch carbon steel pipe elbows and straight pipes, and an image processing method was used to measure the nonlinear behavior of the test specimens. The leakage lines caused by low-cycle fatigue and the low-cycle fatigue curves were compared and analyzed using the relationship between the relative deformation angles, which were measured based on each of the measurement points on the straight pipe, and the moment, which was measured at the center of the pipe elbow. Damage indices based on the combination of ductility and dissipation energy at each measurement point were used to quantitatively express the time at which leakage occurs due to through-wall cracking in the pipe elbow.

주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가 (Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권1호
    • /
    • pp.112-119
    • /
    • 2021
  • 지진하중으로 인한 배관계통의 파괴모드는 라체트를 동반하는 저주기 피로파괴이며 비선형 거동이 집중되고 파손이 발생하는 요소는 엘보인 것으로 나타났다. 본 연구에서는 저주기 피로에 의한 SCH 40 3인치 탄소강관엘보의 파괴기준을 정량적으로 표현하기 위하여 한계상태를 누수로 정의하고 면내반복가력실험을 수행하였다. 배관계통에서 지진하중에 취약한 요소인 탄소강관엘보에 대하여 모멘트-변형각의 관계를 이용한 손상지수를 나타내었으며 힘-변위의 관계를 이용하여 산정된 손상지수와 비교-분석하였다. 탄소강관엘보에 대하여 반복되는 외력에 의한 소산에너지에 기반을 둔 손상지수로서 누수가 발생한 한계상태를 정량적으로 표현하였다.

내압을 받는 내/외부 국부 감육 곡관의 파손거동 (Damage Behavior of Elbow Pipe with Inner or Outer Local Wall Thinning under Internal Pressure)

  • 김수영;남기우
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.66-73
    • /
    • 2014
  • This study was considered to occur the local wall thinning at elbow which is flowing the steam and high-pressure water of high-temperature. The angle of elbow is ${\Theta}=45^{\circ}$ and $67.545^{\circ}$. The damage behaviors of inner or outer wall thinning elbow under internal pressure were calculated by FEA(finite element analysis). We compared the simulated results by FEA with experimental data. The FEA results are as follows: In the FEA results of three types of wall thinning ratio, the circumferential and longitudinal stresses show the similar values regardless of the angle of elbow, respectively. The circumferential strain was greater at elbow of small angle, but the longitudinal strain was nearly same. The FEM stress of outer wall thinning elbow was slightly higher than that of the inner wall thinning elbow, and strain was also slightly higher. In the experiments, the circumferential strain was increased with the increase in the internal pressure, and increased rapidly on about 0.2% of strain. The longitudinal strain was small. The strain at break was much smaller than 0.2%. In the relation between pressure and eroded ratio, the criteria that can be used safely under operating pressure and design pressure were obtained. The results of FEA were in relatively good agreement with those of the experiment.

원주방향 균열이 발생되는 곡관 감육부의 형상적 특성 (Geometric Characteristic of Wall-thinning Defect Causing Circumferential Crack in Pipe Elbows)

  • 김진원;이성호
    • 한국압력기기공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2011
  • The objective of this study is to classify the geometry of wall-thinning defect that causes a circumferential crack in the pipe elbows subjected to internal pressure. For this objective, first of all a criterion to determine the occurrence of circumferential cracking at wall-thinned area was developed based on finite element simulation for burst tests of pipe elbow specimens that showed axial and circumferential cracking at wall-thinned area. In addition, parametric finite element analysis including various wall-thinning geometries, locations, and pipe geometries was conducted and the wall-thinning geometries that initiate circumferential crack were determined by applying the criterion to the results of parametric analysis. It showed that the circumferential crack occurs at wall-thinning defect, which has a deep, wide, and short geometry. Also, it is indicated that the pipe elbows with larger radius to thickness ratio are more susceptible to circumferential cracking at wall-thinned area.

주복수기 냉각해수배관의 직각 엘보 내부유동특성에 관한 연구 (Experimental study of internal flow field about 90degree elbow for cooling seawater pipe at the main condenser)

  • 오승진;조대환;봉태근;김옥석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.152-153
    • /
    • 2012
  • While engine room arranging pipe which is used from the vessel, It measured the internal flow of 90 degree elbow which is used from the main condenser. Fluid flow in elbow of 90 degree is measured by PIV and Dewetron system. The Reynolds number adopts 50000 and experimental study of flow field in the elbow.

  • PDF

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가 (Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis)

  • 김태순;박치용;김진원;박재학
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

직관 지지대 설치 기준의 L형관 설계 적용 가능성에 관한 연구 (Applicability of Supporting Standard for a Straight Pipe System to an Elbow)

  • 한상규;이재헌
    • 플랜트 저널
    • /
    • 제8권2호
    • /
    • pp.52-58
    • /
    • 2012
  • Pipe means the connection of the tube in order to transfer fluid from one device to another device. The piping stress analysis is to analyze the structural stability considering the location and the features of piping support after completing the piping design, The allowable stresses comply with the requirements of the relevant standards by examining whether the support of the function and location of pipe or re-operation is confirmed. Allowable stresses are to make sure that the maximum stress should not exceed the allowable stress presented in the ASME B31.1 POWER PIPING code. ASME B31.1 POWER PIPING code ensures a smooth stress analysis can be performed during the initial pipe stress analysis as provided in the case of straight pipe to the horizontal distance between the supports. However, because there is no criteria set in the case of curved pipe, the optimum pipe supporting points were studied in this paper. As mentioned about the curved pipe, loads applied to the support of the position of 17% and 83% of the position relative to the elbow part have results similar to the load acting on the support of straight pipe.

  • PDF

파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가 (Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests)

  • 김진원;나연수;이성호
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

  • Jeon, Bub-Gyu;Kim, Sung-Wan;Choi, Hyoung-Suk;Park, Dong-Uk;Kim, Nam-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.245-253
    • /
    • 2017
  • The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.