• 제목/요약/키워드: Elastoplastic deformation

검색결과 56건 처리시간 0.026초

온간금형 압축시 구리 분말의 치밀화에 대한 알루미늄 몰드의 영향 (The Effect of an Aluminum Mold on Densification of Copper Powder Under Warm Pressing)

  • 이성철;박태욱;김기태
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.333-339
    • /
    • 2008
  • Densification behavior of copper powder was investigated to study the effect of an aluminum mold under warm pressing. The low flow stress of an aluminum mold is appropriate to apply hydrostatic stress to powder compacts during compaction under high temperature. The suggested powder metallurgy process is very useful under high temperature since copper powder compacts have higher relative density over axial stress of 100 MPa and show more homogeneity as compared with conventional warm pressing. Elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) for densification behavior under warn pressing by using a metal mold. Finite element results agreed well with experimental data for densification and deformation of copper powder compacts in the mold.

금속 몰드를 이용한 금속 분말의 온간 등가압 성형 (Densification Behavior of Metal Powder Under Warm Isostatic Pressing with a Metal Mold)

  • 박중구;김기태
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.838-847
    • /
    • 2004
  • The effect of a metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with a metal mold. We use lead as a metal mold and obtain experimental data of metal mold properties. To simulate densification behavior of metal powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with a metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

금속 몰드를 이용한 금속 분말의 온간 등가압 성형 (Densification behavior of metal powder under warm isostaic pessing with metal mold)

  • 박중구;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가 (Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity)

  • 박문식;강경모;한덕수
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • 제4권2호
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact

  • Das, Raj;Cleary, Paul W.
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.933-961
    • /
    • 2015
  • Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.

비선형 이동경화를 고려한 점소성 모델의 내연적 적분 (A Semi-Implicit Integration for Rate-Dependent Plasticity with Nonlinear Kinematic Hardening)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1562-1570
    • /
    • 2003
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

수평지반반력계수와 점착력에 따른 지반변형계수 산정방법 연구 (A Study on the Method of Calculating the Deformation Coefficient According to the Horizontal Subgrade Reaction Modulus and Cohesion)

  • 전성재;정대석
    • 한국재난정보학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-43
    • /
    • 2023
  • 연구목적: 본 연구에서는 탄소성해석과 수치해석의 차이점 분석과 해석 결과치의 유사한 경향을 도출하기 위한 설계지반정수 재산정 방법의 연구를 수행하였다. 연구방법: 얕은굴착과 깊은굴착에 따라 벽체변위가 같아지는 시점에서의 지반반력계수와 지반변형계수의 관계식을 유도하였다. 연구결과: 계측결과를 바탕으로 역해석을 진행하여 현장지반에 맞는 지반물성을 재산정하고 도출된 식과 문헌식을 이용하여 벽체변위에 대한 비교·검증한 결과 제안식이 가장 유사한 값을 나타내고 있었다. 결론: 제안식을 이용하면 설계시 실제와 가장 비슷한 지반물성치를 유추할 수 있어 실무에 도움이 될 것이다.