• Title/Summary/Keyword: Elasto-Plastic analysis

Search Result 666, Processing Time 0.025 seconds

Ultimate Strength Analysis of Stiffened Shell Structures Considering Effects of Residual Stresses (잔류응력을 고려한 보강된 쉘 구조의 극한강도 해석)

  • 김문영;최명수;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.197-208
    • /
    • 2000
  • Choi et al./sup 1)/ presented the total Lagrangian formulation based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account the second order rotation terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome the shear locking phenomena and to eliminate the spurious zero energy mode. In this paper, for the ultimate strength analysis of stiffened shell structures considering effects of residual stresses, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to anisotropic shell structures. In addition, the load/displacement incremental scheme is adopted for non-linear F.E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with the results in literatures.

  • PDF

A Study on Fatigue Life Prediction of Welded Joints Through Fatigue Test and Crack Propagation Analysis (피로실험 및 균열진전 해석을 통한 용접부의 피로수명 예측에 관한 연구)

  • Y.C. Jeon;Y.I. Kim;J.K. Kang;J.M. Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.93-106
    • /
    • 2001
  • T-joint and hopper knuckle joint models are typical welded joints in ship structure, which are very susceptible to fatigue damage under service condition. Fatigue test and fracture mechanical analysis were performed on these joints to find out characteristics of fatigue behavior. Unified S-N curve was developed from the test results of these two types of joint using hot spot stress concept, and also propagation life was also estimated using Paris' crack propagation law. Residual stress effect on propagation life was considered in calculating propagation life, as was done with thermo-elasto-plastic FE analysis and residual stress intensity factor calculation. Fatigue life of similar kinds of welded joint could be predicted with this unified S-N curve and fracture mechanical analysis technique.

  • PDF

Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process (냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가)

  • Ryu, S.H.;Jung, S.H.;Jeong, H.Y.;Kim, K.I.;Cho, G.S.;Noh, W.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD (FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석)

  • ;Baotang Shen;Ove Stephansson
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.248-260
    • /
    • 2004
  • Damage in brittle rock due to stress increase starts from initiation of microcracks, and then results in failure by forming macro failure planes due to propagation and coalescence of these discrete cracks. Conventionally, continuum approaches using macro-failure criteria or a number of elasto-plastic models have been major solution to implement rock damage and failure. However, actual brittle failure processes can be better described in phenomenological approach if initiation and propagation of discrete fractures are explicitly considered. This study presents damage and failure process of rock using a boundary element code, FRACOD, which has been developed to model fracturing process of rocks. Through a series of numerical uniaxial compressive tests, the feasibility of the developed model was verified, and realistic rock failure process was reproduced considering scale effects in rocks. In addition, the fracturing process and the corresponding rock damage in the vicinity of deep shaft in rock mass were presented as an application of this approach. This approach will be expected to contribute to finding better engineering solutions for the analysis of stability problems in brittle rock masses.

Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity (손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석)

  • 송하원;나웅진
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.241-250
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develop a plasticity and damage algorithm for the finite element analysis of the strain-localization in concrete. In this paper, concrete member under strain localization is modeled with localized zone and non-localized zone. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion by which the nonlinear strain softening behavior of concrete after peak-stress can be considered is introduced in a thermodynamic formulation of the classical plasticity model. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is also derived. For the modeling of non-localized zone in concrete under strain localization, a consistent nonlinear elastic-damage algorithm is developed by modifying the free energy in thermodynamics. Using finite element program implemented with the developed algorithm, strain localization behaviors for concrete specimens under compression are simulated.

  • PDF

The Structural Characteristics of the Temporary Cofferdam in Accordance with the Shape and Size Obtained from Numerical Analysis (유한요소 해석을 통한 형상 및 크기에 따른 가물막이 특성 검토)

  • Kim, Hyun-Joo;Choi, Jin-O;Gwon, Yun-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.29-38
    • /
    • 2020
  • These days the circular cross section cofferdam has been frequently used for the earth retaining structures or cut off wall such as ventilating opening, intake tower in cofferdam, shaft for emergency. By the arching effect, the circular cross section type cofferdam has more advantage than a polygon cofferdam in terms of the structural forces and moment. This paper shows the proper approach to analyze the circular cross section cofferdam using 2D Finite Element Method (FEM) for the circular stiffener (ring beam) evaluation. Besides, the various shapes of cofferdam indluding circular cross section have modeled the 3D Finite Element Mothod (FEM). The circular cross section cofferdam shows the minimum reaction force compared with the other shapes of cofferdam.

A Numerical Analysis on the Collapse and Backfill Mechanism of the Abandoned Mine Cavity (폐광의 점진적 파괴 및 뒷채움 효과에 대한 해석적 연구)

  • Lee, Jun-Suk;Bang, C.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.62-71
    • /
    • 2000
  • The abandoned mines causing settlement of the surface above and collapse of the cavities are the major influencing factor on the stability of the nearby underground structures. To prevent the harmful effect, the backfill methods are commonly applied to the cavities although the design criteria and the analysis method are not properly addressed in some cases. An approximate analytical method together with the numerical technique is considered in this study to simulate the gradual deterioration of the rock masses around the cavities and, therefore, the influential zone to the underground structures passing through the cavities. Also considered in this study is the backfill effect on the stability of the rock masses around the cavities. Specifically, the incomplete backfill effect is compared with that of the idealized backfill method by adopting elasto-plastic analysis involving a strain softening material law.

  • PDF