DOI QR코드

DOI QR Code

The Structural Characteristics of the Temporary Cofferdam in Accordance with the Shape and Size Obtained from Numerical Analysis

유한요소 해석을 통한 형상 및 크기에 따른 가물막이 특성 검토

  • 김현주 ((주)이피에스엔지니어링) ;
  • 최진오 ((주)이피에스엔지니어링) ;
  • 권윤호 ((주)이피에스엔지니어링)
  • Received : 2019.12.03
  • Accepted : 2020.01.16
  • Published : 2020.01.31

Abstract

These days the circular cross section cofferdam has been frequently used for the earth retaining structures or cut off wall such as ventilating opening, intake tower in cofferdam, shaft for emergency. By the arching effect, the circular cross section type cofferdam has more advantage than a polygon cofferdam in terms of the structural forces and moment. This paper shows the proper approach to analyze the circular cross section cofferdam using 2D Finite Element Method (FEM) for the circular stiffener (ring beam) evaluation. Besides, the various shapes of cofferdam indluding circular cross section have modeled the 3D Finite Element Mothod (FEM). The circular cross section cofferdam shows the minimum reaction force compared with the other shapes of cofferdam.

최근 환기구, 비상탈출용 수직구, 취수탑 가시설 등 지중 가물막이 또는 차수벽체로 원형 가물막이가 많이 적용되고 있다. 원형단면의 경우 벽체에 작용하는 토압이 원형가물막이 형상에 따라 아칭효과(arching effect)로 인하여 작용토압에 대한 구조체의 부재력이 감소하는 것으로 알려져 있다. 본 연구에서는 원형 가물막이에 대한 2D 유한요소해석(FEM)을 활용하여 원형띠장(ring beam) 강성을 산출 후 탄소성해석에 적용하여 부재의 단면력을 검토하였다. 더불어 3D 유한요소해석(FEM)을 통하여 원형단면의 가물막이가 다각형 형태의 가물막이보다 전단력, 휨모멘트, 그리고 발생변위가 최소값을 갖는 것으로 나타났으며, 이로써 원형단면 가물막이가 구조적으로 보다 효율적인 단면 형태임을 확인하였다

Keywords

References

  1. Bono, N. A., Liu, T. K., and Soydemir, C. (1992), "Performance of an Internally Braced Slurry-diaphragm Wall for Excavation Support", Slurry Walls: Design, Construction, and Quality Control, ASTM Special Topic Publication, Vol.1129, pp.347-360.
  2. Briaid, J. L. and Kim, N. K. (1998), "Beam-column Method for Tie-back Walls", Proc. ASCE, J. of Geothechnical Eng, Vol.124, No.1, pp.69-79.
  3. Clough, G. W. and O'Rourke, T. D. (1990), "Construction Induced Movements of in Situ Walls", Proceedings of Design and Performance of Earth Retaining Structures, Vol.25, pp.439-470.
  4. Fara, H. D. and Wright, F. D. (1963), "Plastic and Elastic Stresses around a Circular Shaft in a Hydrostatic Stress Field", Society of Mining Engineers, pp.319-320.
  5. Finno, R. J., Blackburn, J. T., and Roboski, J. F. (2007), "Threedimensional Effects for Supported Excavations in Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133(1), pp. 30-36. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30)
  6. Haliburton, T. A. (1968), "Numerical Analysis of Flexible Retaining Structures", Proc. ASCE, 94(SM3), pp.1233-1251.
  7. Hetenyi, M. (1946), Beam on Elastic Foundations, Univ. of Michigan Press, Ann Aarbor.
  8. Jang, C. S. (2002), Application of genetic algorithm to the back analysis of the underground excavation system, PhD thesis, Chung-Ang University, Korea.
  9. Jeong, S. S., Kim, B. C., Won, J. O., and Lee, J. H. (2003), "Uncoupled Analysis of Stabilizing Piles in Weathered Slopes", Computers and Geotechnics, Vol.30(8), pp.671-682. https://doi.org/10.1016/j.compgeo.2003.07.002
  10. Jeong, S. S. and Kim, Y. H. (2009), "Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method", Journal of the Korean geothechnical society, Vol.25, No.4, pp.19-29 (in Korean).
  11. Kim, D. H., Lee, D. S., Kim, K. Y., Lee, Y. H., and Lee, I. M (2009), "Earth Pressures Acting on Vertical Circular Shafts Considering Arching Effects in c-${\Phi}$ Soils", Journal of the Korean tunneling and underground space association, Vol.11, No.2, pp.117-129.
  12. Kim, N. K. (1998), "Beam on Elasto-Plastic Foundation Modeling of Tieback Walls", Journal of the Korean geo-thechnical society, Vol.14, No.6, pp.81-92 (in Korean).
  13. Korea Rail Network Authority (2011), "Design Criteria for Railroad".
  14. Lee, F. H., Yong, K. Y., Quan, K. C., and Chee, K. T. (1998), "Effect of Corners in Strutted Excavations: Field Monitoring and Case Histories", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124(4), pp.339-349. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(339)
  15. Ou, C. Y., Chiou, D. C., and Wu, T. S. (1996), "Three-dimensional Finite Element Analysis of Deep Excavations", Journal of Geotechnical Engineering, Vol.122(5), pp.337-345. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(337)
  16. Shin, Y. W. (2004), "Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft in Cohesionless Soils", PhD thesis, Hanyang University, Korea.
  17. Szechy, K. (1966), "The art of tunnelling", Akademiai kiado, Budapest, pp.909-924.
  18. Terzaghi, K. (1920), "Old earth-pressure theories and new test results", Eng. News-Record 85 (13), pp.632-637.
  19. Terzaghi, K. and Peck, R. B. (1967), "Soil Mechanics in Engineering Practice", 2nd Ed. John Wiley & Sons Inc. New York.