• Title/Summary/Keyword: Elasto-Plastic analysis

Search Result 666, Processing Time 0.025 seconds

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

A Study on the Distortion Control Characteristics of the STS 304 Multi-pass Butt Weldment by the Tensioning Method (인장하중법에 따른 STS 304 다층 맞대기 용접부의 변형 제어 특성에 관한 연구)

  • Kim, Ha-Keun;Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.101-101
    • /
    • 2009
  • The purpose of this study is to develop the control technology of the welding distortion caused by Auto NG-GTA welding process at the STS 304 multi-pass butt weldment. For it, heat input model for Auto NG-GTA welding process was established and verified by measuring temperature change and molten pool shape at the bead-on-plate weldment. With heat input model developed, the effect of the tension load on the amount of welding distortion at the STS 304 multi-pass butt weldment was evaluated using the thermo-elasto-plastic FE analysis. In accordance with FEA results, the angular distortion and transverse shrinkage sharply decreased with an increase in tension load. This result indicates that tensioning method was verified as a countermeasure against the welding distortion of STS 304 multi-pass butt weldment.

  • PDF

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

Shaking Table Test for Analysis of Effect on Vibration Control of the Piping System by Steel Coil Damper (강재 코일 댐퍼의 배관시스템 진동제어 효과 분석을 위한 진동대시험)

  • Choi, Song Yi;So, Gi Hwan;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD's have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.

Elasto-Plastic Analysis for J-integral Evaluation of Unstable Fracture in Cracked Ductile Materials (균열재(龜裂材)의 불안정연성파괴(不安定延性破壞)에 대한 J 적분(J積分) 평가(評價)를 위한 탄소성해석(彈塑性解析))

  • Chang, Dong Il;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1987
  • It is the objective of this study to estimate J-integral by numerical analysis, in which J-integral as aparameters in fracture mechanics can be used to evaluate unstable ductile fracture which is a important problem with respect to structural stability when the scope is beyond small scale yielding criteria. For this, 8-node isoparametric singular element as crack tip element of a cracked material was used to solve plastic blunting phenomenon at crack tip, and crack opening was forced to start when J-value was exceeding fracture toughness $J_{IC}$ of the material. And crack propagation behaviour was treated by using crack opening angle. From this study, it was shown that crack opening, stable propagation and unstable opening point of the cracked material found by using J-value obtained from this study were accord with the other study, so think, J-value obtained from this study can be directly used as a parameter in fracture mechanics to deal with the problem of stable propagation of crack and unstable ductile fracture.

  • PDF

Nonlinear Analysis of Improved Degenerated Shell Finite Element (개선된 Degenerated 쉘 유한요소의 비선형 해석)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem ; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior ; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. In the formulation for plastic deformation, the concept of a layered element model is used and the material is assumed von Mises yield criterion. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting non-linear equilibrium equations are solved by the Netwon-Raphson method combined with load or displacement increment. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

3D Finite Element Analysis of Rock Behavior with Bench Length and Gther Design Parameters of Tunnel (터널의 벤치길이를 중심으로 한 설계변수에 따른 암반거동의 3차원 수치해석)

  • 강준호;정직한;이정인
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Focusing on the bench length, this paper presents the results of 3-dimensional elafto-plastic FE Analysis un tunnels of full face, mini-bench and short bench excavated in weathered rock. Influences of unsupported span, horizontal to vertical stress ratio, thickness of shotcrete on the behavior of rock and support were a1so studied. Results showed that displacements of mini-bench tunnels responded more sensitively to bench lengths than those of short bench. The effects of bench excavation on upper half displacement increased with longer unsupported span. Horizontal to vertical stress ratio showed a greater influence on displacement and preceding displacement ratio or sidewall rather than those of crown and invert.

  • PDF

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.