• Title/Summary/Keyword: Elasticity

Search Result 3,280, Processing Time 0.04 seconds

The Impacts of Financial Expenditures on Employment under the China New Normal (중국 "신창타이" 시대의 재정지출이 취업에 미치는 영향)

  • Shen, Quan-Ping;Kim, Jong-Sup
    • International Area Studies Review
    • /
    • v.21 no.2
    • /
    • pp.21-44
    • /
    • 2017
  • Under the new normal, the China's economy growth has changed rapid growth to moderate growth since 2007. With new paradigm, China is facing an abnormally severe employment situation. Also the financial expenditure is an important macro adjustment method. The research analyzes both implications of financial expenditures to employment in China, and the trend of implication in different regions. The research was conducted by 2SLS method using the panel data of 31 Chinese local governments(provinces, cities, and autonomous districts) during 1998 to 2015. The main findings are as follows. In the new normal model(2008-2015), the financial expenditure to urban employment have higher effect than total employment. Also, higher income region have more positive effect than lower income region. Medical, technology expenditure have positive effect to total employment, social security, education expenditure have positive effect to urban employment. In the total model(1998-2015) have similar results with new normal model, but the elasticity is more higher than total model. Ultimately, it can be seen that the efficiency of financial expenditure is lower than new normal model. The government should increase the proportion of expenditure in fields of social security, education, medical, technology, and improve the expenditure structure. So as to promote the effect of financial expenditure to employment in new normal economy.

The Effect of Applying Various Tools to the Stiffness and Muscle Tone of Hamstring Muscles (다양한 도구의 적용이 뒤넙다리근의 뻣뻣함과 근 긴장도에 미치는 영향)

  • Hwang, Sunghyun;Kim, Taeho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.223-230
    • /
    • 2020
  • Purpose : The purpose of this study was to examine the effects of tools (i., extracorporeal shock wave therapy, massage gun, and foam roller) on range of motion, muscle tone and pain threshold among patients with hamstring stiffness. Methods : Fourteen participants with hamstrings stiffness were recruited. Interventions were performed 6 times, and each session was for 30 seconds using the three tools. The range of motion, muscle tone, and pain threshold were measured. The order of the use of the three tools was randomly determined. The foam roller was made to move from the bottom of the hip crease to the upper part of the back of the hamstring. Additionally, velocity 5 vibration stimulation was performed on the hamstring using a massage gun. Moreover, vibration stimulation was performed on the hamstring with extracorporeal shock wave therapy 5 minutes, 5 Hz, and 1,500 strokes. The flexibility of the posterior thigh muscle was based on maintaining the knee and hip joints in a 90 ° bend in the supine position. The joint angle of the knee was measured, when the knee was actively extended, at the maximum point where the posterior thigh muscle was stretched. The elasticity of the posterior thigh muscle was measured while the subject was prone and in a relaxed state without any force. Measurements were made at the muscle abdominal area of the semitendinosus muscle of the posterior femur, and the area to be measured was marked with a pen. The measurement of the tenderness threshold of the posterior femur was measured using a tenderness meter(Commander Algometer, J-Tech, USA). The force value at the point at which the pressure sensation change to pain was measured after applying vertical pressure to the posterior femur muscle, which was the halfway point between the ischial tuberosity and the popliteal surface of the subject lying on their stomach. Results : The extracorporeal shock wave therapy increased stiffness and, muscle tone, and caused changes in the pain threshold, whereas the other two tools had no effect on these indices. Conclusion : Extracorporeal shock wave therapy has important effects on range of motion and muscle stiffness and can be used in warmup protocols.

Estimating the Demand Function for Industrial Natural Gas Use in Korea : A Cross-sectional Analysis (횡단면 분석을 활용한 한국 산업용 도시가스 수요함수 추정)

  • Lee, Bok-Hee;Lee, Hye-Jeong;Yoo, Seung-Hoon;Huh, Sung-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.34-46
    • /
    • 2020
  • In order to supply stable natural gas in the future, it is necessary to forecast the demand in advance and secure the quantity of supply. In this paper, we propose a method of estimating the demand function of industrial natural gas, which is the core of the increase of domestic natural gas demand in the future. The cross-sectional data of 304 domestic industries were used to estimate the demand function of the industrial natural gas, and the effect of industry specific characteristics such as capital investment, manufacturing cost. Finally, the least absolute deviation estimation method which is robust to outliers and does not assume the homogeneity of the error term and the normality, And the results were derived. In addition, the economic value of industrial city gas was estimated using the price elasticity of industrial city gas. Therefore, it can be seen that the continuous expansion and supply of city gas to the industrial sector is beneficial at the national level, and the government needs to promote expansion through the industrial city gas support policy.

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper (복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구)

  • Kim, Jeong-Jin;Choi, Kyung-Suk;We, Joon-Woo;Seok, Won-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.135-142
    • /
    • 2020
  • In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

Effect of Calcium Type on Coagulation of Surimi Mixture with Alginic Acid (알긴산을 첨가한 수리미 혼합물의 응고에 미치는 칼슘의 영향)

  • Kim, Su-Ryong;Han, Hyeon-Su;Park, Ye-Lin;Kang, Yoo-Seok;Park, Jeong-Cheol;Seo, Hun-Seo;Choi, Ye-Hui;Kim, Su-Hyeong;Jeong, So-Mi;Kang, Woo-Sin;Kim, Han-Ho;Ryu, Si-Hyeong;Lee, Ji-Eun;Xu, Xiaotong;Lee, Ga-Hye;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.218-223
    • /
    • 2021
  • In this study, the possibility of use as a cartridge for 3D printing was confirmed by adding calcium to the alginic acid-added surimi mixture. The Alaska pollack Gadus chalcogrammus surimi added with alginic acid was immersed in a calcium solution (1 M calcium carbonate, 1 M calcium chloride, 1 M calcium sulfate, and 0.1 M calcium lactate) to evaluate the physical properties, color differences, and sensory properties of Alaska pollack surimi according to calcium types. As the results, in the case of surimi paste to which 1 M calcium carbonate was added, physical properties were weaker than that of 1 M calcium chloride, but gelation was appropriate and sensory properties was excellent. Addition of 1 M calcium chloride has the best physical properties, but it has a problem of bitter taste. With the addition of 1 M calcium sulfate, it has low solubility and poor physical properties as well as poor elasticity and bad taste. Addition of 0.1 M calcium lactate has weak physical properties but good sensory properties. From these results, 1 M calcium chloride has the best physical properties, but there is a decisive problem in sensory properties, so 1 M calcium carbonate is most suitable for commercial use.

Numerical Study on the Effect of a Groove of D-type on Internal Flow and Pressure Drop in a Corrugated Pipe (주름관 내부 유동과 압력강하에 대한 D형 그루브의 영향에 관한 수치해석)

  • Hong, Ki Bea;Kim, Dong Woo;Ryou, Hong Sun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • A corrugated pipe is widely used in firefighting equipment and sprinkler pipes because of its elasticity, which is less damaged by deformation and convenient facilities. However, the corrugated shape of the wall results in complex internal turbulent flow, and it is difficult to predict the pressure drop, which is an important design factor for pipe flow. The pressure drop in the corrugated tube is a function of the shape factors of the pipe wall, such as groove height, length, and pitch. Existing studies have only shown a study of pressure drop due to length changes in the case of D-shaped tubes with less than 5 pitch (P) and height (K) of the rectangular grooves in the tube. In this work, we conduct a numerical study of pressure drop for P/Ks with length and height changes of 2.8, 3.5 and 4.67 with Re Numbers of 55,000, 70,000 and 85,000. The pressure drop in the corrugated tube was interpreted to decrease with smaller P/K. We show that the pressure drop is affected by the change in the groove aspect ratio, and the increase in the height of the groove increases the recirculation area, and the larger the Reynolds number, the greater the pressure drop.

Properties of translucent zirconia and lithium disilicate glass-ceramics: a literature review (반투명 지르코니아와 리튬디실리케이트 결정화유리의 물성에 관한 문헌고찰)

  • Cha, Min-Sang;Kim, Ye-Jin;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.2
    • /
    • pp.71-80
    • /
    • 2022
  • Although low translucency 3 mol% yttria stabilized tetragonal zirconia polycrystal has excellent mechanical properties, it has limited application as a monolithic prosthesis. To improve these optical limitations, translucent zirconia has improved esthetics due to an increase in the cubic phase; however, it is accompanied by a decrease in mechanical properties simultaneously. Lithium disilicate has improved its mechanical properties through crystal size reduction and various heat treatment methods; therefore, its clinical application range is continuously increasing. Translucent zirconia shows a wide distribution of physical properties depending on the yttria content and lithium disilicate according to the size and density of crystal grains. As a result, the indications for translucent zirconia and lithium disilicate are increasing. Therefore, in this literature review, we intend to examine the rationale behind the material selection criteria in clinical situations and considerations for designing fixed dental prostheses including pontic, in particular, by summarizing recent studies.

Defect Inspection and Physical-parameter Measurement for Silicon Carbide Large-aperture Optical Satellite Telescope Mirrors Made by the Liquid-silicon Infiltration Method (액상 실리콘 침투법으로 제작된 대구경 위성 망원경용 SiC 반사경의 결함 검사와 물성 계수 측정)

  • Bae, Jong In;Kim, Jeong Won;Lee, Haeng Bok;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.218-229
    • /
    • 2022
  • We have investigated reliable inspection methods for finding the defects generated during the manufacturing process of lightweight, large-aperture satellite telescope mirrors using silicon carbide, and we have measured the basic physical properties of the mirrors. We applied the advanced ceramic material (ACM) method, a combined method using liquid-silicon penetration sintering and chemical vapor deposition for the carbon molded body, to manufacture four SiC mirrors of different sizes and shapes. We have provided the defect standards for the reflectors systematically by classifying the defects according to the size and shape of the mirrors, and have suggested effective nondestructive methods for mirror surface inspection and internal defect detection. In addition, we have analyzed the measurements of 14 physical parameters (including density, modulus of elasticity, specific heat, and heat-transfer coefficient) that are required to design the mirrors and to predict the mechanical and thermal stability of the final products. In particular, we have studied the detailed measurement methods and results for the elastic modulus, thermal expansion coefficient, and flexural strength to improve the reliability of mechanical property tests.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.