• Title/Summary/Keyword: Elastic-plastic finite element method

Search Result 306, Processing Time 0.032 seconds

Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements (대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석)

  • 박기철;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

Deformation Behaviors of Materials during Nanoindentation Test and Simulation by Three-Dimensional Finite Element Analysis (재료의 나노인덴테이션 변형 거동과 3차원 유한요소해석)

  • Kim Ji-soo;Yang Hyeon-yun;Yun Jon-do;Cho Sang-bong
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.436-442
    • /
    • 2004
  • Elastic and plastic deformation behaviors of the high purity aluminum and the silica glass were studied using nanoindentation and finite element analysis(FEA) techniques. Berkovich- and cone-type indenters were used for the nanoindentation test. Deformation behaviors and nanoindent profiles of elastic, elastic-plastic or plastic materials were clearly visualized by FEA simulation. Effects of the penetration depth and strain hardening on the deformation behavior were examined. Pile-up and sink-in behaviors were studied by using FEA technique. Degree of pile-up or sink-in was found to be a function of the ratio of elastic modulus to yield strength of materials. FEA was found to be an effective method to study deformation behaviors of materials under nanoindentation, especially in the case when pile-up or sink-in phenomena occurred.

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

An Evaluation on the Effect of Reversed Plastic Zone on the Fatigue Crack Opening Behavior under 2-D Plane Stress (2차원 평면응력 상태에서 되풀이 소성역이 피로균열 열림 현상에 미치는 영향에 관한 연구)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1078-1084
    • /
    • 2005
  • The relationship between fatigue crack opening behavior and the reversed plastic zone sizes is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the track tip area. The smaller element size than reversed plastic zone size is used fer evaluating the distribution of reversed plastic zone. In the author's previous results the FEA could predict the crack opening level, which crack tip elements were in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone considering crack opening level obtained by experimental results. It can be possible to predict the crack opening level from the reversed plastic zone size calculated by finite element method. We find that the experimental crack opening levels correspond with the opening values of contact nodes on the calculated reversed plastic zone of finite element simulation.

Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition - (탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 -)

  • 심현보;정완진;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1129-1137
    • /
    • 1990
  • Based on the formulation which incorporates large deformation and anisotropy, an elastic-plastic finite element code is developed with membrane element to include the contact treatment. For the analysis of the general sheet metal forming process with contact condition, the treatment of contact is considered by employing the successive skew coordinate system. Three kinds of sheet metal forming processes with contact conditions are analyzed; stretching of a square diaphragm with a hemispherical punch, deep drawing of a circular cup and deep drawing of a square cup. Then the computational results are compared with the experiment. The computed loads and the distribution of the thickness strain are in good agreement with the experiment for all cases. However, the computational results of the thickness strain show the effect of bending can not be ignored in the deep drawing process whereas the effect of bending is negligible in stretching.

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes (2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화)

  • An, Dong-Gyu;Jeong, Dong-Won;Jeong, Wan-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method (벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링)

  • 장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

A Comparative Study on Elastic-Plastic-Static Analysis of Sheet Metal Forming (탄소성 정적해석시 해에 미치는 여러인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.241-244
    • /
    • 1999
  • A series of parametric study was performed for the investigation of the influence of several analysis parameters to the solution behavior in the elasti-plastic-static analysis of sheet metal forming. The parameters taken into the consideration in the present study are finite element mesh distribution and numerical integration scheme, The elstic-plastic-static analysis was performed for two cases : deflection by a point force bending by a punch Results obtained with different selections of the parameters were compared with each other experimental measurements and analytical solutions.

  • PDF

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF

An Elastic-Plastic Stress Analysis in Silicon Carbide Fiber Reinforced Magnesium Metal Matrix Composite Beam Having Rectangular Cross Section Under Transverse Loading

  • Okumus, Fuat
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.221-229
    • /
    • 2004
  • In this work, an elastic-plastic stress analysis has been conducted for silicon carbide fiber reinforced magnesium metal matrix composite beam. The composite beam has a rectangular cross section. The beam is cantilevered and is loaded by a single force at its free end. In solution, the composite beam is assumed perfectly plastic to simplify the investigation. An analytical solution is presented for the elastic-plastic regions. In order to verify the analytic solution results were compared with the finite element method. An rectangular element with nine nodes has been choosen. Composite plate is meshed into 48 elements and 228 nodes with simply supported and in-plane loading condations. Predictions of the stress distributions of the beam using finite elements were overall in good agreement with analytic values. Stress distributions of the composite beam are calculated with respect to its fiber orientation. Orientation angles of the fiber are chosen as $0^{circ},\;30^{circ},\;45^{circ},\;60^{circ}\;and\;90^{circ}$. The plastic zone expands more at the upper side of the composite beam than at the lower side for $30^{circ},\;45^{circ}\;and\;60^{circ}$ orientation angles. Residual stress components of ${\sigma}_{x}\;and \;{\tau}_{xy}$ are also found in the section of the composite beam.