• 제목/요약/키워드: Elastic-plastic Deformation

검색결과 481건 처리시간 0.025초

A numerical analysis of the large deflection of an elastoplastic cantilever

  • Wang, B.;Lu, G.;Yu, T.X.
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.163-172
    • /
    • 1995
  • A simple numerical method is applied to calculate the large deflection of a cantilever beam under an elastic-plastic deformation by dividing the deformed axis into a number of small segments. Assuming that each segment can be approximated as a circular arc, the method allows large deflections and plastic deformation to be analyzed. The main interests are the load-deflection relationship, curvature distribution along the beam and the length of the plastic region. The method is proved to be easy and particularly versatile. Comparisons with other studies are given.

Bounds on plastic strains for elastic plastic structures in plastic shakedown conditions

  • Giambanco, Francesco;Palizzolo, Luigi;Caffarelli, Alessandra
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.107-126
    • /
    • 2007
  • The problem related to the computation of bounds on plastic deformations for structures in plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is unknown during the previous transient phase; so, as a consequence, it is not possible to know the complete elastic plastic structural response. The interest is therefore focused on the computation of bounds on suitable measures of the plastic strain which characterizes just the first transient phase of the structural response, whatever the real load history is applied. A suitable structural model is introduced, useful to describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure are effected and discussed.

변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델 (Two Back Stress Hardening Models in Rate Independent Rigid Plasticity)

  • 윤수진
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.327-337
    • /
    • 2005
  • In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.

Second-order analysis of planar steel frames considering the effect of spread of plasticity

  • Leu, Liang-Jenq;Tsou, Ching-Huei
    • Structural Engineering and Mechanics
    • /
    • 제11권4호
    • /
    • pp.423-442
    • /
    • 2001
  • This paper presents a method of elastic-plastic analysis for planar steel frames that provides the accuracy of distributed plasticity methods with the computational efficiency that is greater than that of distributed plasticity methods but less than that of plastic-hinge based methods. This method accounts for the effect of spread of plasticity accurately without discretization through the cross-section of a beam-column element, which is achieved by the following procedures. First, nonlinear equations describing the relationships between generalized stresses and strains of the cross-section are derived analytically. Next, nonlinear force-deformation relationships for the beam-column element are obtained through lengthwise integration of the generalized strains. Elastic-plastic flexibility coefficients are then calculated by differentiating the above element force-deformation relationships. Finally, an elastic-plastic stiffness matrix is obtained by making use of the flexibility-stiffness transformation. Adding the conventional geometric stiffness matrix to the elastic-plastic stiffness matrix results in the tangent stiffness matrix, which can readily be used to evaluate the load carrying capacity of steel frames following standard nonlinear analysis procedures. The accuracy of the proposed method is verified by several examples that are sensitive to the effect of spread of plasticity.

곡판의 맞대기 용접변형 거동에 관한 연구 (On the Weld-Induced Deformation Analysis of Curved Plates)

  • 이주성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.201-204
    • /
    • 2006
  • A three-dimensional finite element (FEM) model has been developed to simulate the deformation due to bead on plate welding of curved plates with curvature in the weld direction. By using traditional method such as thermal-elastic-plastic FEM, the weld-induced deformation can be predicted accurately. However, this method is not practical approach to analyze the deformation of large and complex structures such as ship hull structures in view of time and cost. This study is classified from the aspect of equivalent load based on inherent strain near the weld line. Therefore, the residual deformation can be simply computed by elastic analysis. Further more, a practical solution is proposed to consider the contact between the plate and the positioning jig by judging the reaction forces of the jig at calculation step and the effect of the longitudinal curvature is closely considered.

  • PDF

용접에서 발생하는 변태소성을 고려한 용접공정의 유한요소 해석 (Finite element analysis of welding process in consideration of transformation plasticity in welding)

  • 임세영
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.210-212
    • /
    • 2003
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical example.

  • PDF

직교 이방적 사질토의 미시역학적 탄소성 모델링: II. 미시역학적 해석 (Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: II. Micromechanics Analysis)

  • 정영훈;정충기
    • 한국지반공학회논문집
    • /
    • 제23권3호
    • /
    • pp.89-100
    • /
    • 2007
  • 본 논문과 함께 제출한 논문에서는 미시역학 기반의 새로운 탄소성 모델의 정식화에 대해 설명하였다. 본 논문에서는 사질토 변형의 탄성 및 탄소성 거동을 미시역학에 근거하여 자세히 분석하였다. 모델에 필요한 변수 평가를 위한 과정을 제시하였다. 등방 및 삼축 압축 시험에서 나타난 사질토의 탄성 거동을 분석한 결과, 직교 이방 탄성계수의 응력 종속성은 미시적 수직 강성에서 나타난 수직 접촉력의 거듭제곱 함수 형태가 반영되어 나타나며, 삼축 압축 응력 상태에서는 조직 이방성의 변화가 응력 종속성에 영향을 미침을 알 수 있었다. 미시역학적 해석을 통해 소성 변형이 매우 낮은 변형률 수준에서도 발현되며, 변형 중 사질토 강성의 비선형적 감소는 접촉점에서의 접선 방향 소성 변형에 의해 나타남을 밝혔다.

후크 벤딩 금형 설계의 전산화에 관한 연구 (Study on the Computerization of Die Design for Bending Hook)

  • 조은정;정호승;정철우;조종래;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.450-456
    • /
    • 2002
  • Die desig for manufacturing hooks from steel wires has been depended on empirical procedures based on trial and error method. To design die, at first the curvature and bending angle of hook are computed by using AutoCAD and developed program which is composed of Visual Basic. Then spring back should be considered because the elastic recovery of material is very important in bending process. In this study, bending analysis of elastic-plastic materials is applied to predict curvature of hook and spring back. Therefore, systematic procedure of die design for bending hook is achieved to consider elastic recovery in terms of hook shapes. Experimental results are good agreement with calculated results.

Load-ratio 법에 의한 SA508C-3와 알루미늄 합금의 탄소성 파괴저항 곡선평가 (Evaluation on elastic-plastic fracture resistance curve of SA508C-3 and aluminum alloy steels by load-ratio method)

  • ;윤한기;차귀준
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.98-105
    • /
    • 1996
  • A method is proposed to evaluate the elastic-plastic fracture resistance curve only with load displacement records without the crack length measurement in CT specimen. This method is based on the idea that the effect of plastic deformation and the crack growth can be measured only by using a load-displacement record. If we know the reference-load curve representing the hardening of specimen, then the crack extension can be calculated by the elastic compliance determined from the load ratio. The results of this proposed method were compared to those of the elastic-plastic fracture resistance curve for the ASTM standard unloading compliance method. The experimental results for two kinds of ductile materials showed that the proposed method well simulates the material J-R curves. This method is currently applied for CT specimens. but it can be extended to the other specimen geometries.

  • PDF

복잡(複雜)한 형상(形狀)의 초기(初期)처짐을 가진 실선(實船)의 Panel의 압괴강도(壓壞强度) 간이추정법(簡易推定法) (Estimation of the Ultimate Compressive Strength of Actual Ship Panels with Complex Initial Deflection)

  • 백점기;김건
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.33-46
    • /
    • 1988
  • This paper describes a simplified method for estimation of the ultimate compressive strength of actual ship panels with initial deflection of complex shape. The proposed method consists of the elastic analysis using the large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection analysis, only one term of Fourier series for the plate deflection is considered. The results of the proposed method are in good agreement with those calculated by the elasto-plastic large deflection analysis using F.E.M. and the computing time of the proposed method is extremely short compared with that of F.E.M.

  • PDF