• Title/Summary/Keyword: Elastic-Plasticity

Search Result 388, Processing Time 0.027 seconds

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Dynamic Fracture Analysis of High-speed Impact on Granite with Peridynamic Plasticity (페리다이나믹 소성 모델을 통한 화강암의 고속 충돌 파괴 해석)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson's ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.

Nonlinear analyses of structures with added passive devices

  • Tsai, C.S.;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.517-539
    • /
    • 2004
  • Many types of passive control devices have been recognized as effective tools for improving the seismic resistance of structures. A lot of past research has been carried out to study the response of structures equipped with energy-absorbing devices by assuming that the behavior of the beam-column systems are linearly elastic. However, linear theory may not be adequate for beams and columns during severe earthquakes. This paper presents the results of research on the nonlinear responses of structures with and without added passive devices under earthquakes. A new material model based on the plasticity theory and the two-surface model for beams and columns under six components of forces is proposed to predict the nonlinear behavior of beam-column systems. And a new nonlinear beam element in consideration of shear deformation is developed to analyze the beams and columns of a structure. Numerical results reveal that linear assumption may not be appropriate for beams and columns under seismic loadings, especially for unexpectedly large earthquakes. Also, it may be necessary to adopt nonlinear beam elements in the analysis and design process to assure the safety of structures with or without the control of devices.

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel (대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구)

  • Hong Jin Tae;Lee Seok-Ryul;Kim Kyung Jin;Yang Dong Yol;Lee Kyung Hun;Choi Moon Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel (용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J.S.;Lee J. M.;;Kim D. J.;Kang Y.S.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

Analysis of Springback of Sheet Metal(II): Experimental Validation of Analytical Model (박판재의 스프링백 해석(II)-해석모델의 실험적 검증)

  • Lee, Jae-Ho;Kim, Dong-Woo;Sohn, Sung-Man;Lee, Mun-Yong;Moon, Young-Hoon
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.516-520
    • /
    • 2007
  • As the springback of sheet metal during unloading nay cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ can be determined by the residual differential strain. Therefore in this study the springback estimated by the residual differential strain is experimentally validated through the comparison with those obtained by U-bending test. The springback characteristics of two analytical models are also estimated at various processing conditions such as thickness, curvature of radius and drawing strain. The model based on residual differential strain has an applied transition strain where the springback undergoes a dramatic decrease. Both models show that springback decreases with increased strip thickness and with decreased radius of curvature. For no applied tension, the model based on residual differential strain predicts more springback as compared to the moment based model.

Analysis of Failure Mechanism for Wire-woven Bulk Kaogme (Wire-woven Bulk Kagome 의 파손 메커니즘 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.