• Title/Summary/Keyword: Elastic wave amplitudes

Search Result 9, Processing Time 0.017 seconds

Finite Element Simulation of Elastic Waves for Detecting Defects and Deteriorations in Underwater Steel Plates (수중강판의 결함 및 열화 검출을 위한 탄성파 유한요소 시뮬레이션)

  • Woo, Jinho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.61-66
    • /
    • 2013
  • This paper presents the results of finite element simulations of elastic wave propagation in an underwater steel plate and the verification of a proposed method utilizing elastic wave-based damage detection. For the simulation and verification, we carried out the following procedures. First, three-dimensional finite element models were constructed using a general purpose finite element program. Second, two types of damages (mechanical defects and deteriorations) were applied to the underwater steel plate and three parameters (defect location, defect width, and depth) were considered to adjust the severity of the applied damages. Third, elastic waves were generated using the oblique incident method with a Gaussian tone burst, and the response signals were obtained at the receiving point for each defect or deterioration case. In addition, the received time domain signals were analyzed, particularly by measuring the magnitudes of the maximum amplitudes. Finally, the presence and severity of each type of damage were identified by the decreasing ratios of the maximum amplitudes. The results showed that the received signals for the models had the same global pattern with minor changes in the amplitudes and phases, and the decreasing ratio generally increased as the damage area increased. In addition, we found that the defect depth was more critical than the width in the decrease of the amplitude. This mainly occurred because the layout of the depth interfered with the elastic wave propagation in a more severe manner than the layout of the width. An inverse analysis showed that the proposed method is applicable for detecting mechanical defects and quantifying their severity.

Variation in Characteristics of Elastic Waves in Frozen Soils According to Degree of Saturation (포화도에 따른 동결토의 탄성파 특성 변화)

  • Park, Jung-Hee;Kang, Min-Gu;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1063-1075
    • /
    • 2013
  • The strength of frozen soils is one of the significant design parameters for the construction in frozen ground. The properties of frozen soils should be investigated to understand the strength of frozen soils. The objective of this study is to figure out the characteristics of elastic waves in frozen soils, which reflect the constituent and physical structure of frozen soils in order to provide fundamental information of those according to the degree of saturation. Freezing cell is manufactured to freeze specimens, which are prepared with the degree of saturation of 10%, 40%, and 100%. Piezo disk elements are used as the compressional wave transducers and Bender elements are used as the shear wave transducers. While the temperature of specimens changes from $20^{\circ}C$ to $-10^{\circ}C$, the velocities, resonant frequencies and amplitudes of the compressional and shear waves are investigated based on the elastic wave signatures. Experimental results reveal that the elastic wave velocities increase as the degree of saturation increases. The variation of resonant frequencies coincide with that of elastic wave velocities. A marked discrepancy in amplitudes of compressional and shear waves are observed at the temperature of $0^{\circ}C$. This study renders the basic information of elastic waves in frozen soils according the degree of saturation.

The Third Critical Angle in Reflection of Elastic Waves in Fiber-reinforced Composites (섬유강화 복합재료 내 탄성파 반사현상의 제3임계각)

  • Yim, Hyun-June;Baek, Eun-Sol
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • As a fundamental approach to studying elastic wave behaviors in fiber-reinforced composites, this paper introduces the analytical method to predict the modes, directions, and amplitudes of all reflected waves that are generated by free-surface reflection in fiber-reinforced composites. The paper also explores a new phenomenon where a reflected wave that is predicted to exist in accordance with the slowness surface may disappear. This may occur when the angle of incidence of a quasi-shear wave exceeds a newly defined critical angle, named the third critical angle. It is hoped that the analytical approach introduced in this paper will provide an easy-to-follow guideline for researchers in the relevant area such as ultrasonic nondestructive testing.

An Analysis of Stress Waves in an Elastic Half Space to a Normal Point Force of Ramp Type in Time (램프형 포인트하중에 의한 반무한 탄성체의 응력파해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Joo;Kim, Sang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.4
    • /
    • pp.673-678
    • /
    • 1997
  • Stress wave propagations in an elastic half space to a normal point force of ramp type in time are analyzed. The governing equations are transformed by applying the Laplace and Hankel transforms with respect to time and radial distance. The inversion of Laplace transforms are performed by employing the Cagniard-de Hoop method, where the Rayleigh waves at surface are obtained by including the residue terms. The stress waves computed at the location very cose to the surface are shown to be almost identical to the surface waves obtained by the residue method except the Rayleigh wavefront. It is found that at the surface, the stresses are dominated by the Rayleigh waves, whose amplitudes increase linearly with time when time is very large. It is also found that in the interior part, the radial stress has a logarithmic singularity at the shear wavefront, while tangential stress shows no singularity.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Kumar, Rajneesh;Sharma, Nidhi;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.117-135
    • /
    • 2009
  • The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.

Attenuation of quasi-Lamb waves in a hydroelastic system "elastic plate+compressible viscous fluid+rigid wall"

  • Akbarov, Surkay D.;Negin, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.443-459
    • /
    • 2022
  • The paper studies the dispersion and attenuation of propagating waves in the "plate+compressible viscous fluid layer" system in the case where the fluid layer flow is restricted with a rigid wall, and in the case where the fluid layer has a free face. The motion of the plate is described by the exact equations of elastodynamics and the flow of the fluid by the linearized Navier-Stokes equations for compressible barotropic Newtonian viscous fluids. Analytical expressions are obtained for the amplitudes of the sought values, and the dispersion equation is derived using the corresponding boundary and compatibility conditions. To find the complex roots of the dispersion equation, an algorithm based on equating the modulus of the dispersion determinant to zero is developed. Numerical results on the dispersion and attenuation curves for various pairs of plate and fluid materials under different fluid layer face conditions are presented and discussed. Corresponding conclusions on the influence of the problem parameters on the dispersion and attenuation curves are made and, in particular, it is established that the change of the free face boundary condition with the impermeability condition can influence the dispersion and attenuation curves not only in the quantitative, but also in the qualitative sense.