DOI QR코드

DOI QR Code

Variation in Characteristics of Elastic Waves in Frozen Soils According to Degree of Saturation

포화도에 따른 동결토의 탄성파 특성 변화

  • Park, Jung-Hee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kang, Min-Gu (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 박정희 (고려대학교 건축사회환경공학부) ;
  • 강민구 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2013.02.12
  • Accepted : 2013.04.10
  • Published : 2013.05.30

Abstract

The strength of frozen soils is one of the significant design parameters for the construction in frozen ground. The properties of frozen soils should be investigated to understand the strength of frozen soils. The objective of this study is to figure out the characteristics of elastic waves in frozen soils, which reflect the constituent and physical structure of frozen soils in order to provide fundamental information of those according to the degree of saturation. Freezing cell is manufactured to freeze specimens, which are prepared with the degree of saturation of 10%, 40%, and 100%. Piezo disk elements are used as the compressional wave transducers and Bender elements are used as the shear wave transducers. While the temperature of specimens changes from $20^{\circ}C$ to $-10^{\circ}C$, the velocities, resonant frequencies and amplitudes of the compressional and shear waves are investigated based on the elastic wave signatures. Experimental results reveal that the elastic wave velocities increase as the degree of saturation increases. The variation of resonant frequencies coincide with that of elastic wave velocities. A marked discrepancy in amplitudes of compressional and shear waves are observed at the temperature of $0^{\circ}C$. This study renders the basic information of elastic waves in frozen soils according the degree of saturation.

극한지 지반의 설계정수 산정을 위해 동결토의 강도 특성은 매우 중요한 요인이며 이를 파악하기 위해서는 동결토의 기본적인 특성을 파악하는 것이 선행되어야 한다. 본 연구에서는 동결토의 구성 성분 및 물리적 구조를 반영하는 탄성파에 대한 기초적인 정보를 제공하기 위해 포화도에 따른 동결토의 탄성파 특성을 파악하고자 하였다. 시료를 동결시키기 위해 동결 용 셀을 제작하였으며 포화도가 각각 10%, 40%, 100%인 시료를 조성하였다. 시료가 동결되는 동안 탄성파를 측정하기 위해 전단파 트랜스듀서로서 벤더엘리먼트를 사용하였으며, 압축파 트랜스듀서로서 피에조 디스크 엘리먼트를 사용하였다. 포화도가 다른 세 가지 시료의 온도가 $20^{\circ}C$에서 $-10^{\circ}C$까지 변하는 동안 압축파 및 전단파 신호를 측정하였으며, 이를 토대로 탄성파 속도, 공진주파수 및 진폭의 변화를 파악하였다. 또한 탄성파 속도를 이용해 포화도가 다른 동결토의 포아송 비를 분석하였다. 시료가 동결된 이후에 포화도가 큰 시료의 탄성파 속도가 가장 크게 나타났다. 또한 탄성파 속도와 공진주파수의 변화는 매우 유사하게 나타났고 그 변화는 동시에 발생하였다. 압축파와 전단파의 진폭은 시료가 동결되는 $0^{\circ}C$에서 각기 다른 양상을 나타내었다. 본 연구는 동결토의 구조적 매커니즘에 대한 정보를 제공하는 탄성파 특성을 시료의 포화도에 따라 파악하고자 하였다는 점에서 의의가 있다.

Keywords

References

  1. ASTM D854 (2006). Standard test methods for specific gravity of soil solids by water pycnometer, Annual Book of ASTM Standard.
  2. ASTM D4253 (2006). Standard test methods for maximum index density and unit weight of soils using a vibratory table, Annual Book of ASTM Standard.
  3. ASTM D4254 (2006). Standard test methods for minimum index density and unit weight of soils calculation of relative density, Annual Book of ASTM Standard.
  4. Chaney, R. and Mulilis, P. J. (1978). "Suggested method for soil specimen remolding by wet raining." Geotech. Testing J. ASTM, Vol.1, No.2, pp. 107-108. https://doi.org/10.1520/GTJ10378J
  5. Cho, G. C. and Santamarina J. C. (2001). "Unsaturated particulate materials-particle-level studies." Journal of Geotech Geoenviron Eng, ASCE, Vol. 127, No. 1, pp. 84-96. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84)
  6. Christ, M. and Park, J. B. (2009). "Ultrasonic technique as tool for determining physical and mechanical properties of frozen soils." Cold Regions Science and Technology, Vol. 58, pp. 136-142. https://doi.org/10.1016/j.coldregions.2009.05.008
  7. Deschartres, M. H., Cohn-Tenoudji, Fr., Aguirre-Puente, J. and Khastou, B. (1988). "Acoustic and unfrozen water content determination." In Proc.5th Inl. Conf .on Permafrost, pp. 324-328.
  8. Das B. M. (2008). Advanced soil mechanics, Taylor & Francis Group, London.
  9. Hong, S. S., Kim, Y. S., Kim, H. S., and Bae, G. J. (2010). "A fundamental study of artificial ground freezing, " 2010 Korean Geo-Environmental Society Fall Conference, pp. 417-421 (in Korean).
  10. Ishihara, K., Huang, Y., and Tsuchiya, H. (1998). "Liquefaction resistance of nearly saturated sand as correlated with longitudinal wave velocity. " Proc. Biot Conf. on Poromechanics, Poromechanics - A Tribute to Maurice A. Biot, Thimus, J.F., Abousleiman, Y. Cheng, A.H.D. Coussy, O., and Detournay, E., eds., pp 583-586.
  11. Kim, Y. C., Bae, J. H., and Song, W. K. (2002). "An experimental study on the unfrozen water contents and ultrasonic wave velocity in frozen soil." Journal of Korean Society of Civil Engineers, Vol. 2, No 3-C, pp. 207-217 (in Korean).
  12. Kim, Y. C. (2003). "An experimental study on the electrical resistivity and ultrasonic wave velocity in frozen soil." Korean Geoenvironmental Society, 03 conference, pp. 135-142.
  13. Lee, I. M. (2011). Principle of soil mechanics, Saeron, Seoul, pp. 566 (in Korean).
  14. Lee, I. M., Hung Truong, Q., Kim, D. H., and Lee, J. S. (2009). "Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection : Laboratory Scale Application." Tunnelling and Underground Space Technology, Vol. 24, No. 2, pp. 155-163. https://doi.org/10.1016/j.tust.2008.06.001
  15. Lee, J. S. and Lee, C. H. (2006). "Principles and considerations of bender element tests." Journal of the Korean Geotechnical Society, Vol. 22, No. 5, pp. 47-57 (in Korean).
  16. Lee, C., Truong, Q. H., Lee, J. S. (2010). "Cementation and bond degradation of rubber-sand mixtures." Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 763-774 https://doi.org/10.1139/T09-139
  17. Lee, J. S. and Santamarina, J. C. (2005). "Bender elements : Performance and Signal Interpretation." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  18. Nakano, Y., Arnold, R. (1973). "Acoustic properties of frozen Ottawa sand." Water Resources Research, Vol. 9 No. 1, pp. 178-184. https://doi.org/10.1029/WR009i001p00178
  19. Nakano, Y., Martin, R. J. and Smith, M. (1972). "Ultrasonic velocity of the dilation and shear wave in frozen soil." Water Resources Research, Vol. 8, No. 4, pp. 1024-1030. https://doi.org/10.1029/WR008i004p01024
  20. Park, J. H., Hong, S.S., Kim, Y, and Lee, J.S. (2012). "Characteristics of elastic waves in sand-silt mixtures due to freezing." Journal of Korean Geoenvironmental Society, Vol. 13, No 4, pp. 27-36 (in Korean).
  21. Park, J. H., Kang, M. G., Seo, S. Y., and Lee, J. S. (2012). "The effect of surface tension on shear wave velocities according to changes of temperature and degree of saturation." Journal of Korean Society of Civil Engineers, Vol 32, No 6C, pp. 285-293 (in Korean). https://doi.org/10.12652/Ksce.2012.32.6C.285
  22. Roesler, S. K. (1979). "Anisotropic shear modulus due to stress anisotropy." Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. 7, pp. 871-880.
  23. Rose, J. (1999). Ultrasonic waves in solid media, Cambridge University Press, Cambridge, UK.
  24. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001). Soils and Waves - Particulate materials behavior, Characterization and Process Monitoring, Wiley, New York.
  25. Shin, E. C. and Kim, J. S. (2011). "Experimental study on freezing soil barrier wall for contaminant transfer interception." Journal of Korean Geosynthetics Society, Vol. 10, No. 2, pp. 29-34 (in Korean).
  26. Truong, Q. H., Eom, Y. H., Byun, Y. H., and Lee, J. S. (2010). "Characteristics of elastic waves according to cementation of dissolved salt." Vadose Zone Journal, Vol. 9, No. 3, pp. 662-669. https://doi.org/10.2136/vzj2009.0131
  27. Timur, A. (1968). "Velocity of compressional waves in porous media at permafrost temperatures." Geophysics, Vol. 33, No. 4, pp. 584-595. https://doi.org/10.1190/1.1439954
  28. Vaid, Y. P. and Nequssey, D. (1984). "Relative density of air and water pluviated sand." Soils and Foundations, Vol. 24, No. 2, pp. 101-105.
  29. Wang, D. Y., Zhu, Y. L., Ma, W., and Niu, Y. H. (2006). "Application of ultrasonic technology for physical-mechanical properties of frozen soil." Cold Regions Science and Technology, Vol. 44, pp. 12-19. https://doi.org/10.1016/j.coldregions.2005.06.003
  30. Wood, A. B. (1941). A textbook of sound, The Mac-millan Company, New York.
  31. Wyllie, M. R., Gregory, A. E., and Gardner, L. W. (1956). "Elastic wave velocities in heterogeneous and porous media." Geophysics, Vol. 21 No. 1, pp. 41-70. https://doi.org/10.1190/1.1438217
  32. Yoon, H. K., and Lee, J. S. (2010). "Field velocity resistivity probe for estimating stiffness and void ratio." Soil Dynamics and Earthquake Engineering, Vol. 30, No. 12, pp. 1540-1549. https://doi.org/10.1016/j.soildyn.2010.07.008
  33. Yu, J. D., Bae, M. H., Han, S. I., Lee, I. M., and Lee, J. S.(2008). "Defect ratio evaluation of the rock bolt grouting using the reflection method of guided ultrasonic waves." Journal of Korean Tunneling and Underground Space Association, Vol. 10, No. 3, pp. 221-232 (in Korean).
  34. Yu, P. and Richart, F. E. Jr. (1984). "Stress ratio effects on shear modulus of dry sands." Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 3, pp. 331-345. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(331)
  35. Zumdahl, S.S and Zumdahl, S.A. (2008). Chemistry, Brooks Cole, Belmont.

Cited by

  1. Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content vol.25, pp.1, 2015, https://doi.org/10.9720/kseg.2015.1.93