• Title/Summary/Keyword: Elastic sheet

Search Result 178, Processing Time 0.023 seconds

Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes (탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Jeong, Gwan-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

Improvement of Strain and Elastic Modulus of Linerboard to Prevent Score Crack

  • Chin, Seong-Min;Choi, Ik-Sun;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • When corrugated board is folded at the severely low humidity condition, crack can occur along the scored (or creased) lines of linerboard. This phenomenon is called as score (or crease) crack. It is mainly resulted from the excessive concentration of stress on the outer layer of linerboard. To overcome score crack, many approaches including the installation of constant temperature and humidity system, displacement of low grade raw material by long and strong fibers, or application of water have been tried. We examined the effect of the weight fraction of top layer in two-ply sheet, freeness of top layer stock and wet pressing on strain and elastic modulus of sheet to prevent score crack. Lower freeness and higher press load increased the density and elastic modulus of sheet. Pressing load over the $50kgf/cm^2$, however, decreased the strain of sheet. The weight fraction of top layer had positive effect on strain as well as elastic modulus without increasing the density of sheet.

Quantitative Analysis of Elastic Recovery Behavior after Bending of Ultra High Strength Steel Sheet: Spring-back or Spring-go (유한요소법을 이용한 초고강도 판재 굽힘에 따른 후변형의 정량적 분석: Spring-back or Spring-go)

  • Kwak, E.J.;Lee, K.;Suh, C.H.;Lim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.456-460
    • /
    • 2011
  • A major source of difficulty in die design for high strength steel is the high level of elastic recovery during unloading. The degree of elastic recovery is affected by factors such as material strength, bending angle, punch's corner radius and sheet thickness. Finite Element Method was used in the present work to quantitatively analyze the elastic recovery for various combinations of these parameters. In some cases elastic recovery happened in reverse direction. This phenomenon, which we call spring-go, was explained via changes in stress distribution in the panel occurring in the forming process.

Numerical Study on Flexible Forming Process for Sheet Metal (박판용 가변성형공정의 수치적 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

A Study on the Springback of Sheet Characteristics for Roll forming Analsys (판재 특성에 따른 롤 성형 해석시 스프링백 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Son, S.M.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.300-301
    • /
    • 2007
  • In this study, it is investigated that sheet characteristics of high strength steel sheets and effect of springback. High strength steel sheets has got attention in automobile industry of high strength and high formability. Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. However, the information in deformation behavior of high strength steel sheets, including bending and sheet characteristics and springback, is not enough until now. In this research, the V-bending experiment and analysis have been done to obtain the information of springback of high strength steel sheets. Tensile test for high strength steel sheets was done to got tensile properties of elastic modulus and flow stress of the material. It analyzed springback according to the sheet characteristics with using roll-forming model. FE-Simulation used DEFORM-$3D^{TM}$.

  • PDF

Residual Stress Analysis of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력 해석)

  • 정호승;조종래;문영훈;김교성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Residual stress of sheet occurs during cold rolling and it is hard to avoid and inevitable. The residual stress in the sheet cause etching curls when it suffers peroration process. The residual stress through the thickness direction in the sheet is a function of a friction coefficient, total reduction, mil size and initial sheet thickness. To estimate the residual stress and deformation due to etching curl, FEM analysis is performed. A numerical analysis is used a ANSYS 5.6 and an elastic-plastic constitutive equations. rho simulation results indicate a distribution of residual stress.

  • PDF

Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich

  • Xiao, Wei;Yan, Chang;Tian, Weibo;Tian, Weiping;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • Properties of AFS vary with the changes in the face-sheet materials. Hence, the performance of AFS can be optimized by selecting face-sheet materials. In this work, three types of face-sheet materials representing elastic-perfectly plastic, elastic-plastic strain hardening and purely elastic materials were employed to study their effects on the flexural behavior and failure mechanism of AFS systematically. Result showed face-sheet materials affected the failure mechanism and energy absorption ability of AFS significantly. When the foam cores were sandwiched by aluminum alloy 6061, the AFS failed by face-sheet yielding and crack without collapse of the foam core, there was no clear plastic platform in the Load-Displacement curve. When the foam cores were sandwiched by stainless steel 304 and carbon fiber fabric, there were no face-sheet crack and the sandwich structure failed by core shear and collapse, plastic platform appeared. Energy absorption abilities of steel and carbon fiber reinforced AFS were much higher than aluminum alloy reinforced one. Carbon fiber was suggested as the best choice for AFS for its light weight and high performance. The versus strength ratio of face sheet to core was suggested to be a significant value for AFS structure design which may determine the failure mechanism of a certain AFS structure.

An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis (분기좌굴이론의 탄소성 유한요소법에의 적용)

  • 김종봉;양동열;윤정환
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process (가변성형 공정에서 탄성 패드의 영향에 관한 수치적 연구)

  • Heo, Seong-Chan;Seo, Young-Ho;Noh, Hak-Gon;Ku, Tae-Wan;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.549-556
    • /
    • 2010
  • In general, materials that can be used to form elastic pads, such as urethane and rubber, are often used in flexible forming processes by inserting the pads between a blank and flexible die for smoothing the forming surface that is formed by a reconfigurable die. In this study, the effects of the elastic pad on formability in the flexible forming process for sheet metals are investigated by performing numerical simulations. In the simulation, the hyperelastic material model is used, where the urethane elastic pads serve as elastic cushions. Case studies are carried out for elastic materials with different hardness values and thicknesses. The results are used to evaluate formability by comparing the configuration of the deformed blank and its major cross-sectional profiles. It is verified that the elastic pad used in the flexible forming process for sheet materials should be hard and that its thickness should be chosen appropriately.