• Title/Summary/Keyword: Elastic material

Search Result 2,366, Processing Time 0.024 seconds

A Study on Evaluation System of Track Support Stiffness for Concrete Tracks (콘크리트궤도의 궤도지지강성 평가시스템에 관한 연구)

  • Choi, Jung-Youl;Kim, Man-Hwa;Kim, Hyun-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • A conventional elastic material replacement and performance evaluation are very complicated and time-consuming, and it is difficult to know when to replace the elastic material in advance. By comparing with the product limit and the functional limit, the necessity of elastic material replacement and the improvement of track support stiffness according to replacement can be immediately demonstrated based on experimental data. Using an evaluation system of track support stiffness, the performance evaluation data for elastic materials obtained through field tests using software for track support stiffness is integrated and managed on the administrator's computer. Therefore, the replacement plan is established and maintenance history is managed by identifying the replacement time and location of elastic materials. It is possible to evaluate the performance and condition of the elastic material at the various points during the working time of the track inspection and the track performance (track support stiffness) and durability of the elastic material (aging level, spring stiffness variation rate, etc.) at the operation condition. The elastic material could be replaced timely, and the deterioration of the elastic material can be continuously monitored.

Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer

  • Intarit, P.;Senjuntichai, T.;Rungamornrat, J.;Rajapakse, R.K.N.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.85-105
    • /
    • 2011
  • The influence of surface elasticity and surface residual stress on the elastic field of an isotropic nanoscale elastic layer of finite thickness bonded to a rigid material base is considered by employing the Gurtin-Murdoch continuum theory of elastic material surfaces. The fundamental solutions corresponding to buried vertical and horizontal line loads are obtained by using Fourier integral transform techniques. Selected numerical results are presented for the cases of a finite elastic layer and a semi-infinite elastic medium to portray the influence of surface elasticity and residual surface stress on the bulk stress field. It is found that the bulk stress field depends significantly on both surface elastic constants and residual surface stress. The consideration of out-of-plane terms of the surface stress yields significantly different solutions compared to previous studies. The solutions presented in this study can be used to examine a variety of practical problems involving nanoscale/soft material systems and to develop boundary integral equations methods for such systems.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Determination of Elastic Modulus of Equal-Channel-Angular-Pressed Aluminum 5052 Alloy by Acoustic Material Signature (음향재료신호를 이용한 강소성변형된 알루미늄 5052 합금의 탄성계수 측정)

  • Kim, Chung-Seok;Park, Ik-Keun;Jhang, Kyoung-Young;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.146-154
    • /
    • 2010
  • The effects of severe plastic deformation, equal channel angular pressing, and annealing of Al 5052 alloy on elastic modulus have been studied. The AI 5052 alloy was plastically deformed by ECAP method after solution treatment, and then finally annealing heat treated. Elastic modulus was measured by conventional tensile and nano-indentation test, and also measured on the surface of the specimen using acoustic material signature of the acoustic microscope. The variation in the elastic modulus influenced by plastic deformation and heat treatment, inaccessible by the conventional techniques, was successfully measured by acoustic material signature and obtained the elastic modulus depending on crystal orientation at each grain.

Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation

  • Barka, Merbouha;Benrahou, Kouider Halim;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.91-112
    • /
    • 2016
  • In this paper, post-buckling behavior of sandwich plates with functionally graded (FG) face sheets under uniform temperature rise loading is examined based on both sinusoidal shear deformation theory and stress function. It is supposed that the sandwich plate is in contact with an elastic foundation during deformation, which acts in both compression and tension. Thermo-elastic non-homogeneous properties of FG layers change smoothly by the variation of power law within the thickness, and temperature dependency of material constituents is considered in the formulation. In the present development, Von Karman nonlinearity and initial geometrical imperfection of sandwich plate are also taken into account. By employing Galerkin method, analytical solutions of thermal buckling and post-buckling equilibrium paths for simply supported plates are determined. Numerical examples presented in the present study discuss the effects of gradient index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation parameters.

A sutudy of Elasticity Fabrics Expressed on Fashion Style (패션 작품(作品)에 표현(表現)된 신축성(伸縮性) 소재(素材)의 연구(硏究))

  • Choi, Jeong-Im;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.11 no.4
    • /
    • pp.92-100
    • /
    • 2007
  • The most emphasized materials in the modern fashion are the elastic materials with the advent of sportswear. In the area of elastic materials, the technology of foaming plastics became main research area. As novel materials, latex and neoprene based fabrics are emerging for the elastic material, among those elastic material staged by renowned fashion designers. We searched those works through literature and pictures, and examined the physical properties. Neoprene composite with filament knit fabrics are excellent in strength and water-proof. Latex fabrics gave smooth feel and elastic feel. These may be adequate for aesthetic textile material. Based on these characteristics, these techno-texitiles will find broad applications in the fashionable materials.

Assessment of Equivalent Elastic Modulus of Perforated Spherical Plates

  • JUMA, Collins;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Perforated plates are used for the steam generator tube-sheet and the Reactor Vessel Closure Head in the Nuclear Power Plant. The ASME code, Section III Appendix A-8000, addresses the analysis of perforated plates, however, this analysis is only limited to the flat plate with a triangular perforation pattern. Based on the concept of the effective elastic constants, simulation of flat and spherical perforated plates and their equivalent solid plates were carried out using Finite Element Analysis (FEA). The isotropic material properties of the perforated plate were replaced with anisotropic material properties of the equivalent solid plate and subjected to the same loading conditions. The generated curves of effective elastic constants vs ligament efficiency for the flat perforated plate were in agreement with the design curve provided by ASME code. With this result, a plate with spherical curvature having perforations can be conveniently analyzed with equivalent elastic modulus and equivalent Poisson's ratio.

Micromechanical Models for the Evaluation of Elastic Moduli of Concretes (콘크리트 탄성계수 추정의 미시역학적 모델)

  • 조호진;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.383-391
    • /
    • 1997
  • The prediction of effective properties of heterogeneous material like concrete is of primary importance in design or analysis. This paper os about micromechanice-based evaluation of elastic moduli of concretes considering composite material behavior. In this study, micromechanixe-based schemes for the effective elastic modui of the lightweight foamed concrete and the normal concrete are proposed based on averaging techniques using a single-layered inclusion model and a multi-phase and multi-layered inclusion model. respectively, For the verification's sake, elastic moduli evaluated in this study are compared with experimental data and results by existing formula.

  • PDF

Effect of Side Groove on the Elastic Plastic Fracture Toughness of Gas Piping Material (가스배관재의 탄소성파괴인성에 미치는 측면홈 영향)

  • 임만배;차귀준;윤한기;공유식;김정호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.63-68
    • /
    • 2001
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ATM E813-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_IC. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.

  • PDF

Reduction of Non-Repeatable Runount in a HDD Using Visco-elastic Damping Material (점탄성 댐핑 물질을 이용한 하드 디스크 드라이브의 NRRO저감)

  • 장건희;홍선주;한재혁;김동균
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1234-1239
    • /
    • 1999
  • This research investigates the characteristicsw of NRRO in a 2.5" HDD by using FEM, modal testing and runout analysis, and reduces NRRO using visco-elastic damping material. Most frequency components of NRRO are generated by the defects of ball and rotating race, and they can be determined by the kinematic analysis of ball bearing. It also proposes the novel design of a spindle motor that can reduce NRRO effectively by inserting the visco-elastic damping material to one of the transmission path of NRRO, i.e., where the strain energy is highly concentrate. By this technique, NRRO is reduced by 27%. 27%.

  • PDF