• Title/Summary/Keyword: Elastic joint

Search Result 356, Processing Time 0.027 seconds

Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot (구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘)

  • Jung, Byung-jin;Kim, Tae-Keun;Won, Geon;Kim, Dong Sup;Hwang, Junghun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

Dynamic Changes depending on Adaptation to Assistive Joint Stiffness in Metatarsophalangeal Joint during Human Running (인체주행 시 중족지절 관절 보조 강성에의 적응에 따른 동역학적 변화 고찰)

  • Keonyoung Oh
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.57-65
    • /
    • 2024
  • Recently, several studies have been conducted to lower the cost of transport of human by adding external joint stiffness elements. However, it has not been clearly elucidated whether adaptation time is required for human subjects to adapt to the added external joint stiffness. In this study, carbon plates in the form of shoe midsoles were added to the metatarsophalangeal joint, and the lower limb joint torque and mechanical energy consumption were compared before and after a total of 5 sessions (2.5 weeks) of running. A total of 11 young healthy participants exhibited higher elastic energy storage in carbon plates in the fifth session compared to the first session, and lower power in the ankle joint. This suggests that a single training session may be insufficient to validate the efficiency effect of added joint stiffness, and the human body seems to increase the elastic energy stored in the assistive joint stiffness and its reutilization.

Analysis on Rehabilitation of Elbow Joint Using Elastic String (탄성 줄을 이용한 팔꿈치 관절 재활 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • This paper analyses the characteristics of a stiffness-based rehabilitation mechanism for improving the function of the elbow joint of a human. We consider an elastic string as a tool for the elbow joint rehabilitation, where the string has been modeled as a linear spring with a stiffness. For effective rehabilitation training by using such a mechanism, we need to analyse the available torque characteristics of the elbow joint according to the stiffness of the string. Through various simulations, the torque pattern and its range of the elbow joint by assigning the stiffness of the string have been identified for a pre-defined trajectory of motion of the elbow joint. Finally, we show that the specified stiffness-based rehabilitation scheme can be used for effective rehabilitation of the elbow joint.

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

Set-Point Control of Elastic Joint Robots Using only Position Measurements

  • Son, Young-Ik;Hyungbo Shim;Seo, Jin-Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1079-1088
    • /
    • 2002
  • Motivated by the dynamic output feedback passification results, point-to-point control laws for an elastic joint robot are presented when only the position measurements are available. The proposed method makes a parallel connection of the robot system and an input-dimensional linear system which obtains the effect of the desired differentiators. It is shown that the closed-loop nonlinear robot system can be rendered output strictly passive and the regulation of the system is achieved in the end. Robustness analysis is also given with regard to uncertainties on the robot parameters. Performance of the proposed control law is illustrated in the simulation studies of a manipulator with three revolute elastic joints.

The Effect of Elastic Therapeutic Taping on Lower Limb Kinematics during a Cross Cutting Movement from Landing in Subjects with Chronic Ankle Instability (탄력 테이핑이 만성 발목 불안정 환자의 착지 후 방향 전환 시 하지 관절 움직임에 미치는 영향)

  • Jo, Tae-Seong;Kim, Tack-Hoon;Choi, Houng-Sik;Roh, Jung-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSE: This study investigated the effect that an elastic therapeutic taping treatment given to patients with chronic ankle instability had on the vertical ground reaction force, center of pressure, and range of motion in the ankle, knee and hip joints, during a Cross-cutting movement from landing. METHODS: This study analyzed 12 able-bodied adults and 12 patients with chronic ankle instability classified by using the Cumberland tool in the motion analysis laboratory, Hanseo University. The experiment was conducted under two conditions elastic taping and no treatment. In order to analyze the difference between the groups. An independent t-test was performed at p>.01. RESULTS: Plying an elastic therapeutic taping to the patients with chronic ankle instability significantly decreased the range of joint motion in the inversion of the ankle joint, the flexion of the knee joint, and the flexion and internal rotation of the hip joint during a cross-cutting movement from landing in comparison with the able-bodied adults p<.01. This restriction in the range of motion decreased the center-of-pressure trajectory length of patients with chronic ankle instability p>.01. CONCLUSION: An elastic therapeutic taping treatment given to patients with chronic ankle instability causes ankle stability to increase during a cross-cutting movement from landing.

Buckling of aboveground oil storage tanks under internal pressure

  • Yoshida, Shoichi
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.131-144
    • /
    • 2001
  • Overpressurization can occur due to the ignition of flammable vapors existing inside aboveground oil storage tanks. Such accidents could happen more frequently than other types of accident. In the tank design, when the internal pressure increases, the sidewall-to-roof joint is expected to fail before failure occurs in the sidewall-to-bottom joint. This design concept is the socalled "frangible roof joint" introduced in API Standard 650. The major failure mode is bifurcation buckling in this case. This paper presents the bifurcation buckling pressures in both joints under internal pressure. Elastic and elastic-plastic axisymmetric shell finite element analysis was performed involving large deformation in the prebuckling state. Results show that API Standard 650 does not evaluate the frangible roof joint design conservatively in small diameter tanks.

The effect of hip joint exercise using an elastic band on dynamic balance, agility and flexibility in healthy subjects: a randomized controlled trial

  • Kang, Dong Hyun;Lee, Woo Hyung;Lim, Song;Kim, Yu Yeong;An, Soung Wook;Kwon, Chang Gyeong;Lee, Gyeong Hee;Choi, Nu Ri;Lee, Na Yeong;Kim, Bo Min;Kim, Jae Hyeon;Chung, Eun Jung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.198-204
    • /
    • 2016
  • Objective: The purpose of this study was to examine the effects of hip joint exercise using an elastic band on dynamic balance, agility, and flexibility in healthy subjects. Design: Randomized controlled trial. Methods: Thirty-five subjects (between 19 and 23 years) were randomly allocated to two groups: hip flexion exercise (HFE) group (n=17) and the hip abduction exercise (HAE) group (n=18). The HFE group participated in flexion exercise of the hip joint using an elastic band for 50 minutes a day, three days a week for four weeks, while the HAE group participated in abduction exercises of the hip joint using an elastic band for the same period. Dynamic balance was measured using the timed up and go (TUG) test, agility was measured with the standing long jump, and flexibility was measured using the Schober's test (5 cm, 10 cm). Results: The HFE group showed significant differences in the TUG test, standing long jump, and the Schober's test (10 cm) after training (p<0.05). The HAE group showed significant differences in the TUG test, standing long jump and the Schober's test (5 cm, 10 cm) after training (p<0.05). However, there was no significant difference between the HFE group and the HAE group. Conclusions: Flexion and abduction exercises of the hip joint using and elastic band increased dynamic balance, agility, and flexibility in healthy subjects. Additional research on hip joint exercises using an elastic band for improving dynamic balance, agility and flexibility are necessary.

Finite Element Simulation of Elastic Waves for Detecting Anti-symmetric Damages in Adhesively-Bonded Single Lap Joint (단면 겹치기 접착 조인트에 존재하는 비대칭 결함 탐지를 위한 탄성파 유한요소 시뮬레이션)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.124-130
    • /
    • 2009
  • This study presents a finite element simulation of elastic waves for detecting anti-symmetric damages in an adhesively-bonded single lap joint. Plane strain elements were used for modeling adherents (aluminum) and adhesives (epoxy). Three types of damage were introduced: thickness reduction, elasticity deterioration, and voids in the adhesive layers, and two excitation and reception arrangements (ER1 and ER2) were used to investigate the detectability of the damage. The simulation showed that symmetrically located damage, such as a thickness reduction, can be detected by one excitation and one reception arrangement (ER1) and anti-symmetric damages, such as elasticity deterioration and voids, can be detected by modified two-point elastic wave excitation (ER2). Compared with the ER1 arrangement, the ER2 arrangement does not require a baseline signal for damage detection; hence, an efficient method of anti-symmetric damage detection in an adhesively-bonded single lap joint is proposed.