• 제목/요약/키워드: Elastic hinge

검색결과 93건 처리시간 0.024초

Microstage와 global stage를 결합한 초정밀 2축 이동장치 개발 (Development of high-precision 2-axis translation system comprised of microstage and global stage)

  • 김종윤;엄태봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1997
  • According to the development of industrial equipment such as semiconductor manufacturing machines, optical device, and precision machine tool, a high-precision translation system with wide range has been required. This paper describes a high-precision 2-axis translation system, which consists of microstage and global stage. In order to achieve the highresolution in the long range, some engineering techniques are used. Three linear guides with flexible coupling are adopted to reduce the motor vibration in the global stage. A simple elastic hinge structure activated by five PZT is applied to reduce the angular dev~atlon. As the result of combination of microstage and global stage associated with some engineering techniques, the 2-axis translation system can measure the 200 X 200 mrn range with the nanometer accuracy.

  • PDF

Direct design of truss bridges using advanced analysis

  • Kim, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.871-882
    • /
    • 1998
  • This paper presents a new design method of truss bridges using advanced analysis. In this approach, separate member capacity checks encompassed by the specification equations are not required because the stability of separate members and the structure as a whole can be treated rigorously for the determination of the maximum strength of the structures. The method is developed and refined by modifications to the conventional elastic-plastic hinge method. Verification studies are carried out by comparing with the plastic-zone solutions. The load-deflection behavior of the truss shows a good agreement between the plastic-zone analysis. A case study is provided for a truss bridge. Member sizes determined by the proposed method are compared with those determined by the conventional method. It is concluded that the proposed method is suitable for adoption in practice.

이상화 구조요소법에 의한 골조구조물의 최종강도해석에 관한 연구 (A Study on the Ultimate Strength Analysis of Frame Structures by Idealized Structural Unit Method)

  • 백점기;임화규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.28-33
    • /
    • 1990
  • This paper presents an efficient and accurate method for nonlinear analysis of frame structures by idealized structural unit method. The main idea behind the present method is to minimize the cost of the computational effort by reducing the number of unknowns. An explicit form of the tangential elastic stiffness matrix of the element is derived by using updated Lagrangian approach. An ultimate limit state of the element is judged on the basis of the formation of a plastic hinge mechanism. The elasto-plastic stiffness matrix and the post-ultimate stiffness matrix of the element are formulated by plastic node method. A comparison between the present method is very efficient and accurate because the computing time required is very small while giving the accurate solution.

  • PDF

X, Y 방향에 따른 상부벽식-하부골조의 비선형 정적응답특성 (The Response Characteristics of Nonlinear Pushover Analysis of Upper Wall-Lower Frame System with X and Y-Directions)

  • 강병두;전대한;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 2003
  • The purpose of this study is to investigate the response characteristics of pushover analysis of upper wall-lower frame system with X and Y-directions' lateral load Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program. The conclusions of this study are as follows; (1) As a result of pushover analysis, the magnitude of nonlinear response and distribution of yield hinge in lower structure are similar with both X and Y directions, but not in upper structure because of different relative stiffness. (2) The maximum drift ratio of roof is larger for X-direction than for Y-direction with respect to magnitude of shear wall areas in upper structure.

  • PDF

PZT 액추에이터를 이용한 mm범위의 위치결정용 정밀스테이지의 개발 (Development of precision-stage for the millimeter dynamic range by using the PZT actuato)

  • 정동호;남기호;권현규
    • 한국기계가공학회지
    • /
    • 제7권1호
    • /
    • pp.32-37
    • /
    • 2008
  • This paper presents a new precision stage by using the PZT actuator and stepping motor. The stage have the precision positioning mechanism that has been developed for generation displacements with nanometer accuracy and a millimeter dynamic range simulatneously. The stage is composed not of the mechanical elastic hinge but of the clamp, and only one PZT actuator. The displacement of stage is acquired by the control of the two clamp between the PZT actuator. The results of the FEM analysis in the contact part of the clamp and basic properties of the positioning system are also presented. Using the new stage proposed in this paper.

  • PDF

Dynamic response of elasto-plastic planar arches

  • Lee, S.L.;Swaddiwudhipong, S.;Alwis, W.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.9-23
    • /
    • 1996
  • The behaviour of elasto-plastic planar arches subjected to dynamic loads in presented. The governing equations are formulated through the dynamic equations and compatibility conditions. The latter is established by applying the generalized conjugate segment analogy. Bending moments at the nodes and axial forces in the members are considered as primary variables in the elastic regime. They are supplemented by the rotations at the nodes and dislocations in the elements when plastic hinges occur. Newmark-${\beta}$ method is adopted in the time marching process. The interaction diagram of each element is treated as the yield surface for the element and the associated flow rule is enforced as plastic flow occurs. The method provides good prediction of dynamic response of elasto-plastic arches while requiring small core storage and short computer time.

비선형 유한요소법을 이용한 헬리콥터 로터허브용 탄성체베어링 설계 (Design of an Elastomeric Bearing for a Helicopter Rotor Hub by Non-linear Finite Element Method)

  • 김현덕;류시융;박정선
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.612-619
    • /
    • 2010
  • 본 연구에서는 비선형 유한요소법을 사용하여 헬리콥터용 구형 탄성체베어링을 설계하였다. 탄성체베어링은 헬리콥터 로터허브의 주요부품으로 로터블레이드의 플래핑운동, 래그운동, 피치운동의 힌지 역할을 한다. 탄성체베어링은 고무판과 금속판으로 구성된다. 탄성체 베어링은 고무의 탄성변형을 이용하여 힌지 역할을 하기 때문에 강성설계가 중요하다. 따라서 탄성체베어링은 로터허브 베어링의 강성요구 조건을 만족하도록 설계되어야한다. 본 연구에서는 구형의 탄성체베어링의 효율적인 설계를 위하여 유한요소모델 생성 알고리즘을 개발하고, 단일 고무판의 강성 특성을 분석을 수행하였다. 끝으로, 본 연구에서 설계한 탄성체베어링의 헬리콥터 로터허브용으로 적합한지 검증하였다.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석 (Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations)

  • 조성민;박상일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구 (An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly)

  • 이정윤;김진영;오기종
    • 콘크리트학회논문집
    • /
    • 제19권4호
    • /
    • pp.441-448
    • /
    • 2007
  • 지진하중을 받는 철근콘크리트 접합부의 거동은 전단과 부착 메커니즘에 의해 결정된다. 하지만 전단과 부착은 반복하중에 매우 취약하기 때문에 접합부는 항상 탄성 영역 내에 있어야 한다. 내진 설계 기준에서는 보에 소성힌지를 발생시켜 기둥과 접합부는 탄성 상태를 유지하면서 보에서 에너지소산이 이루어지도록 하는 것을 원칙으로 한다. 하지만 접합부와 인접한 보에 소성힌지가 발생할 경우, 보에서 발생한 소성힌지에서의 철근 변형률이 접합부 철근의 변형에 영향을 미쳐 결국 접합부의 전단 및 부착강도를 떨어뜨리는 결과를 가져오게 된다. 본 논문에서는 보 인장 철근량을 변수로 한 다섯 개의 철근콘크리트 보-기둥 접합부를 제작하고 보에 소성힌지를 발생시킨 후 그 결과를 분석하였다. 실험 결과, 보 인장철근량이 적을수록 접합부의 연성은 증가하였다. 또한 소성힌지 영역의 철근이 항복함에 따라 접합부의 연성률이 증가하고 접합부의 보 부재축 방향 인장변형률도 증가하였다.