• Title/Summary/Keyword: Elastic constants

Search Result 266, Processing Time 0.03 seconds

Modified Lysmer's analog model for two dimensional mat settlements under vertically uniform load

  • Chang, Der-Wen;Hung, Ming-He;Jeong, Sang-Seom
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • A two dimensional model of linearly elastic soil spring used for the settlement analysis of the flexible mat foundation is suggested in this study. The spring constants of the soils underneath the foundation were modeled assuming uniformly vertical load applied onto the foundation. The soil spring constants were back calculated using the three-dimensional finite element analysis with Midas GTS NX program. Variation of the soil spring constants was modeled as a two-dimensional polynomial function in terms of the normalized spatial distances between the center of foundation and the analytical points. The Lysmer's analog spring for soils underneath the rigid foundation was adopted and calibrated for the flexible foundation. For validations, the newly proposed soil spring model was incorporated into a two dimensional finite difference analysis for a square mat foundation at the surface of an elastic half-space consisting of soft clays. Comparative study was made for elastic soils where the shear wave velocity is 120~180 m/s and the Poisson's ratio varies at 0.3~0.5. The resulting foundation settlements from the two dimensional finite difference analysis with the proposed soil springs were found in good agreement with those obtained directly from three dimensional finite element analyses. Details of the applications and limitations of the modified Lysmer's analog springs were discussed in this study.

Acoustic and Elastic Properties of the Southeastern Yellow Sea Mud, Korea

  • Kim, Gil-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.49-55
    • /
    • 2006
  • Compressional wave velocity (Vp), shear wave velocity (Vs), elastic and physical properties, and electrical resistivity for two core sediments obtained from Southeastern Yellow Sea Mud (SEYSM) were measured and computed. The sediments consist of homogeneous mud (mostly silt and clay) with shells and shell fragments. As a result, the mean grain size is uniform ($7.5-8.5{\Phi}$ throughout the core sediments. However, physical properties such as wet bulk density and porosity show slightly increasing and decreasing patterns with depth, compared to the mean grain size. The compressional (about 1475 m/s in average) and shear wave (about 60 m/s in average) velocities with depth accurately reflect the pattern of wet bulk density and porosity. Electrical resistivity is more closely correlated with compressional wave velocity than physical properties. The computed Vp/Vs and Poisson's ratios are relatively higher (more than 10) and lower (approximately 0.002) than Hamilton's (1979) data, respectively, suggesting the typical characteristics of soft and fully water-saturated marine sediments. Thus, the Vp/Vs ratio in soft and unconsolidated sediments is not likely sufficient to examine lithology and sediment properties. Relationships between the elastic constant and physical properties are correlated well. The elastic constants (Poisson's ratio, bulk modulus, shear modulus) given in this paper can be used to characterize soft marine sediments saturated with seawater.

Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation (원자로 용접부의 국부적 미세조직 변화에 따른 동적탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Joo-Hag;Hong, Jun-Hwa;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.390-396
    • /
    • 2000
  • The dynamic elastic constants of the simulated weld HAZ (heat-affected zone) of SA 508 Class 3 reactor pressure vessel (RPV) steel were investigated by resonant ultrasound spectroscopy (RUS). The resonance frequencies of rectangular parallelepiped samples woe calculated from the initial estimates of elastic stiffness $c_{11},\;c_{12}\;and\;c_{44}$ with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class 3 steel were determined by iteration and convergence processes. Clear differences of Youngs modulus and shear modulus were shown from samples with different thermal cycles and microstructures. Youngs modulus and shear modulus of samples with fine-grained bainite were higher than those with coarse-grained tempered martensite. This tendency was confirmed from other results such as micro-hardness test.

  • PDF

A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings (구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구)

  • 정성남;동경민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

Thick laminated circular plates on elastic foundation subjected to a concentrated load

  • Sheng, Hongyu
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.441-449
    • /
    • 2000
  • In this study, the state equation for axisymmetric bending of laminated transversely isotropic circular plates on elastic foundation is established on the basis of three-dimensional elasticity. By using the expansions of Bessel functions, an analytical solution of the problem is presented. As a result, all the fundamental equations of three-dimensional elasticity can be satisfied exactly and all the independent elastic constants can be fully taken into account. Furthermore, the continuity conditions at the interfaces of plies can also be satisfied.

Elastic properties of ion-assisted Cr films measured by brillouin light scattering (브릴루앙 산란 실험을 이용한 이온빔 보조 증착법의 Cr 박막의 탄성특성)

  • ;;;John R. Dutcher
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.50-55
    • /
    • 1995
  • We have performed Brillouin light scattering experiments to study the elastic properties of Cr films deposited on soda-lime glasses by using Ar-ion assisted deposition techniques. The elastic constants of the films increased as the ion-current density employed during the film deposition increases and they approached to the values of bulk Cr. The best fit values of the elastic constants of the films manufactured with ion current density of $400\muA/cm^{2}$are $c_{11}=296, c_{13}=83, c_{33}=289$, and $c_{55}=c_{44}=108(\times10^9/N/m^{2}}$ and these are 5% lower than those of bulk Cr in hexagonal symmetry. metry.

  • PDF

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.