• Title/Summary/Keyword: Elastic constants

Search Result 269, Processing Time 0.024 seconds

CAVITY FORMATION IN INTERFACE BETWEEN POWER LAW CREEP PARTICLE AND ELASTIC MATRIX SUBJECTED TO A UNIAXIAL STRESS

  • Lee, Yong-Sun;Ha, Young-Min;Hwang, Su-Chul
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.69-88
    • /
    • 1995
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. Through previous stress analysis related to the present physical model, the relaxation time is defined by ${\alpha}$2 which satisfies the equation $\Gamma$0 |1+${\alpha}$2k|m=1-${\alpha}$2 [19]. $\Gamma$0=2(1/√3)1+m($\sigma$$\infty$/2${\mu}$)m($\sigma$0/$\sigma$$\infty$tm) where $\sigma$$\infty$ is an applied stress, ${\mu}$ is a shear modulus of a matrix, $\sigma$$\infty$ is a material constant of a power law particle, $\sigma$=$\sigma$0 $\varepsilon$ and t elapsed time. the volume free energy associated with Helmholtz free energy includes strain energies associated with Helmholtz free energy includes strain energies caused by applied stress anddislocations piled up in interface (DPI). The energy due to DPI is found by modifying the results of Dundurs and Mura[20]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(${\gamma}$) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius ${\gamma}$ and incubation time t to maximize Helmholtz free energy is found in present analysis. Also, kinetics of cavity fourmation are investigated using the results obtained by Riede[16]. The incubation time is defied in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that [1] strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius ${\gamma}$ decreases or holds constant with increase of time until the kinetic condition(eq.40) is satisfied. Therefore the cavity may not grow right after it is formed, as postulated by Harris[11], and Ishida and Mclean[12], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f) and particle size on the incubation time are estimated using material constants of the copper as matrix.

A Study on Scale Effects in Jointed Rock Mass Properties, and Their Application (절리 암반물성의 크기효과 및 그 적용에 관한 연구)

  • 김창용;문현구
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.147-164
    • /
    • 1997
  • This study has the assumption that scale effects in rock mass properties are atrributed to the discontinuous and inhomogeneous nature of rock masses. In order to escape the general equivalent material approach applied to the concept of representative volume element, this study presents the new method considering irregular i oink geometry and arbitrary numbers of i oink and arbitrary joint orientations. Based on the theoretical approach, this theory is applied to a real engineering project. Showing the property variations with size of rock mass element, various numerical experiments about scale effect are conducted. Particularly, to prove the adequacy of the verification process in scale effect with nomerical method, and to investigate the detailed source of scale effect, 4 models with increas ins number of joints are tested. On the basis of the experimental results, the test results of scale effects in 3-D rock mass are presented. From these experiments the effects of the mechanical properties of rock joints on the scale effects in rock mass strength and elastic constants are discussed. To verify the mechanism of scale effects in jointed rock mass, two models with different j oink geometries are studied.

  • PDF

Constitutive Modeling for Resilient Behavior of Granular Materials under Repeated Loading (반복하중을 받는 입상재료의 회복탄성거동에 관한 구성모델)

  • Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.827-838
    • /
    • 1994
  • Numerous pavement response models rely on constitutive relationships to describe the response of granular materials. In this study, a nonlinear elastic constitutive model which is a function of bulk stress and octahedral shear stress is proposed to describe the resilient behavior of thick granular base courses under flexible airfield pavements. Special features of this model are its accuracy to predict the nonlinear resilient behavior, its simplicity to determine the material constants and its ability to model the secondary effect of decreasing the resilient modulus due to shear effects. In laboratory tests, the nonlinear resilient behavior of granular materials is investigated and values of resilient moduli are determined to provide data for verifying the proposed model. It is found that the resilient modulus is much more dependent on the states of stresses in terms of bulk stress and deviator stress than any other factors. Result of comparison shows that predicted values of resilient moduli are in good agreement with the measured values indicating that the proposed model is suitable to describe the nonlinear resilient behavior of the granular material with wide range of stress states which meet in airfield pavements.

  • PDF

Development of Fine Dust Measurement Method based on Ultrasonic Scattering (초음파 산란 기법을 적용한 미세먼지 측정법 개발)

  • Choi, Hajin;Woo, Ukyong;Hong, Jinyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.40-48
    • /
    • 2019
  • New concept of fine dust measurement method is suggested based on ultrasonic scattering. These days, fine dust has been social problem in Korea, and many researches has been conducted including the area structural maintenance. Conventional measurement system such as optical scattering and semiconductor has a limit from environmental factors like relative humidity. However, ultrasound is based on mechanical waves, which perturb mechanical properties of medium such as density and elastic constants. Using the advantage, the algorithm for fine dust measurement is derived and evaluated using 2-D finite difference method. The numerical analysis simulates ultrasonic wave propagation inside multiple scattering medium like fine dust in air. Signal processing scheme is also suggested and the results show that the error of the algorithm is around minimum of 0.7 and maximum of 24.9 in the number density unit. It is shown that cross-section of fine dust is a key parameter to improve the accuracy of algorithm.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

A study of life predictions on very high temperture thermal stress (고온분위기에서 열응력을 받는 부재의 수명예측에 관한 연구)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.117-125
    • /
    • 1998
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. The volume free energy associated with Helmholtz free energy includes strain energies caused by applied stress and dislocations piled up in interface(DPI). The energy due to DPI is found by modifying the result of Dundurs and Mura[4]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(r) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius $r^*$ and incubation time $t^*$ to maximise Helmholtz free energy is found in present analysis. Also, kinetics of cavity formation are investigated using the results obtained by Riede [7]. The incubation time is defined in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that 1) strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius $r^*$ decreases or holds constant with increase of the time until the kinetic condition(eq. 2.3) is satisfied. there for the cavity may not grow right after it is formed, as postulated by Harris [15], and Ishida and Mclean [16], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f)and particle size on the incubation time are estimated using material constants of the copper as matrix.

  • PDF

Prediction of Driving Stresses in Piles (항타응력 추정)

  • 진병익;황정규
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-38
    • /
    • 1987
  • The prediction of driving stresses in piles is necessary for optimum selection of driving hammers, better design of precast piles, enact assessment of drivabilities and complete description of piling specifications. However, the existing pile-driving formulas based on the theory of Newtonian impact have some defects and shortcomings; the numerical method by the wave equation analysis using electronic computer usually Involves various uncertainties and limitations which can yield erroneous outcomes because it employs soil constants of which the nature is unknown as essential parameters and ignores the effect of residual stresses set up in the pile .after each hammer blow; and the electronic measuring technique needs extra time and expense. The method developed herein is presented for the purpose of giving field engineers a reliable and convenient analytical procedure for the prediction of driving stresses along the full length of pile using the most effetive parameters without resort to electronic computer. This method is based on the fundamental mechanics of stress waves in elastic rods and takes into account the effect of residual stresses induced by reversed friction in piles.

  • PDF

Piezoelectric and electromechanical properties of PZT films and PZT microcantilever (PZT 박막의 압전 특성 및 MEMS 기술로 제작된 PZT cantilever의 전기기계적 물성 평가)

  • 이정훈;황교선;윤기현;김태송
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.177-180
    • /
    • 2002
  • Thickness dependence of crystallographic orientation of diol based sol-gel derived PZT(52/48) films on dielectric and piezoelectric properties was investigated The thickness of each layer by one time spinning was about 0.2 $\mu\textrm{m}$, and crack-free films was successfully deposited on 4 inches Pt/Ti/SiO$_2$/Si substrates by 0.5 mol solutions in the range from 0.2 $\mu\textrm{m}$ to 3.8 $\mu\textrm{m}$. Excellent P-E hysteresis curves were achieved without pores or any defects between interlayers. As the thickness increased , the (111) preferred orientation disappeared from 1$\mu\textrm{m}$ to 3 $\mu\textrm{m}$ region, and the orientation of films became random above 3 $\mu\textrm{m}$. Dielectric constants and longitudinal piezoelectric coefficient d$\_$33/, measured by pneumatic method were saturated around the value of about 1400 and 300 pC/N respectively above the thickness of 0.8 7m. A micromachined piezoelectric cantilever have been fabricated using 0.8 $\mu\textrm{m}$ thickness PZT (52/48) films. PZT films were prepared on Si/SiN$\_$x/SiO$_2$/Ta/Pt substrate and fabricated unimorph cantilever consist of a 0.8 fm thick PZT layer on a SiNx elastic supporting layer, which becomes vibration when ac voltage is applied to the piezoelectric layer. The dielectric constant (at 100 kHz) and remanent polarization of PZT films were 1050 and 25 ${\mu}$C/$\textrm{cm}^2$, respectively. Electromechanical characteristics of the micromachined PZT cantilever in air with 200-600 $\mu\textrm{m}$ lengths are discussed in this presentation.

  • PDF

Basemat Uplifting Effects on Seismic Response of Soil-Structure Interaction System (기초의 부분적 들림이 지반-구조물상호작용 시스템의 지진응답에 미치는 영향)

  • Joe, Yang Hee;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 1990
  • An analytical procedure is proposed for the seismic analysis of a soil-structure interaction system with besemat uplift, including the effects of concurrent vertical seismic ground motion, nonlinear distribution of bearing soil pressure under the basemat, and 3-dimensional behavior of the system. The soil-structure interaction system is assumed to have rectangular-shaped basemat on elastic half-space. Nonlinearity of soil spring constants and soil damping coefficients induced by the base mat uplift is modeled by considering not only the reduction of contact area between soil and structure but also the effects of rigid body rotational motion of the superstructure, and the shift in the point of action of the resultant reaction on the basemat. Throught various parametric studies. it has been confirmed that the seismic responses of the superstructure reduce notably while response at the basemat increases considerably. The results also show that the effects of concurrent vertical ground motion. nonlinear soil pressure distribution under basemat, and 3-dimensional behavior of the system shall be included in uplift analysis in order to obtain the correct structural responses.

  • PDF

Measurement of Ultrasonic Nonlinearity Parameter of Fused Silica and Al2024-T4 (Fused Silica와 Al2024-T4의 비선형 파라미터 측정)

  • Kang, To;Lee, Taekgyu;Song, Sung-Jin;Kim, Hak-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • Nonlinearity parameter is an inherent property of materials measuring fundamental acoustic amplitude($A_1$) and second harmonic amplitude($A_2$). However, measurement of $A_1$ and $A_2$ has complex calibration procedure, many researchers prefer to measure relative nonlinearity parameter rather than absolute nonlinearity parameter. But, relative nonlinearity parameter is only detect materials degradation with various degradation samples, it is limited application in determining third order elastic constants of materials. Therefore, in this study, the piezoelectric detection method is adopted to measure absolute nonlinearity parameter due to experimental simplicity compare to capacitive detector. Linearity of measurement system is verified by $A_1^2vsA_2$ plot, and we measured ultrasonic nonlinearity parameters of fused silica and Al2024-T4.