• Title/Summary/Keyword: Elastic collision

Search Result 72, Processing Time 0.019 seconds

Deformation of Moho in the Southern Part of the Korean Peninsula (한반도 남부 모호면의 변형 구조)

  • Shin, Young-Hong;Park, Jong-Uk;Park, Pil-Ho
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.620-642
    • /
    • 2006
  • The Moho structure and its deformation in the southern part of the Korean Peninsula were estimated using gravity and topography data. Gravity signals from the upper and lower crust were separated using a filter that was computed from isostacy and elastic thickness. The result of this study shows three characteristic features of the Moho deformation. First, the Moho folding structure is parallel to SKTL (the South Korean Tectonic Line), which indicates positive association with the collision of the Yeongnam and Gyeonggi Massifs and repeated compression afterwards. In contrast, noticeable deformation of the Moho was not observed along the Imjingang Belt, which is interpreted as another continental collisional belt in the Korean Peninsula. Second, the Moho beneath the Gyeongsang Basin has remarkably risen; this seems to be the result from both the collisional compression and buoyancy caused by magmatic underplating. Third, the Moho deformation is shallowest in the east of the Taebaek Mountains and deepens toward the west, consistent with the topographic characteristic of the Korean Peninsula of "high east and low west". It can be interpreted as the results of the opening of the East Sea and Ulleung Basin. A tectonic explanation for this could be the ascent of the mantle induced by continental rifting and horizontal extension at the early stage of the opening of the East Sea. The Moho deformation model computed in this study correlates well with the earthquake distribution and crustal movement measured by GPS. We suggest that the compression along the SKTL is still exerted, consequently, the Moho deformation is active, although it may be weak.

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

이온산란분광법을 이용한 Si(113)의 표면 구조 변화 관찰

  • 조영준;최재운;강희재
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.148-148
    • /
    • 2000
  • 지금까지 반도체 표면에 대한 연구는 주로 (1000, (111) 표면 등 낮은 밀러 지표를 가진 표면에 대해 이루어져 왔다. 이에 반해 밀러 지표가 높은 Si 면은 불안정하고, 가열하면 다른 표면, 즉 지표가 낮은 면으로 재배열하는 경향이 있는 것으로 알려져 있는데 아직 이들 높은 밀러 지표를 가진 표면에 대한 연구는 미미한 상태이다. 그러나, Si(113)면은 밀러 지표가 높으면서도 안정하기 때문에 Si(113)의 구조를 정확하게 알 수 있다면 밀러 지표가 낮은 Si 표면이 안정한 이유를 이해할 수 있을 것이다. 따라서 본 연구에서는 TOF-CAICISS 장치(Time of Flight - CoAxial Impact Collision Ion Scattering Spectroscopy) 장비와 RHEED(Reflection High Energy Electron Diffrction)를 이용하여 Si(113) 표면의 구조와 Si(113) 표면의 온도에 따른 구조 변화를 관찰하였다. TOF-CAICISS 실험결과를 보면 (3$\times$2)에서 (3$\times$1)으로 상변환하면서 Si(113) 표면에 오각형을 이루는 dimer 원자들과 adatom 원자들간의 높이차가 작아짐을 알 수 있다. RHEED 실험결과와 전산 모사 결과로부터 상온에서 Si(113)(3$\times$2) 구조를 가지다가 45$0^{\circ}C$~50$0^{\circ}C$에서 Si(113) (3$\times$1) 구조로 상변환한다는 것을 알 수 있다. 그러나, 아직 상전이 메카니즘은 명확하게 밝혀지지 않았다. 실험결과를 전산 모사와 비교함으로써 Si(113) 표면에 [33]방향으로 이온빔을 입사시켰을 경우 dabrowski 모델과 Ranke AI 모델이 적합하지 않다는 것을 알 수 있다./TEX>, shower head의 온도는 $65^{\circ}C$로 설정하였다. 증착된 Cu 박막은 SEM, XRD, AFM를 통해 제작된 박막의 특성을 비교.분석하였다. 초기 plasma 처리를 한 경우에는 그림 1에서와 같이 현저히 증가한 초기 구리 입자들이 관측되었으며, 이는 도상 표면에 활성화된 catalytic site의 증가에 기인한다고 보여진다. 이러한 특성은 Cu films의 성장률을 향상시키고, 또한 voids를 줄여 전기적 성질 및 surface morphology를 향상시키는 것으로 나타났다. 결과 필름의 잔류 응력과 biaxial elastic modulus는 필름의 두께가 감소함에 따라 감소하는 경향을 나타냈으며, 같은 두께의 필름인 경우, 식각 깊이에 따른 biaxial elastic modulus 의 변화를 통해 최적의 식각 깊이를 알 수 있었다.도의 값을 나타내었으며 X-선 회절 data로부터 분석한 박막의 변형은 증온도에 따라 7.2%에서 0.04%로 감소하였고 이 이경향은 유전손실은 감소경향과 일치하였다.는 현저하게 향상되었다. 그 원인은 SB power의 인가에 의해 활성화된 precursor 분자들이 큰 에너지를 가지고 기판에 유입되어 치밀한 박막이 형성되었기 때문으로 사료된다.을수 있었다.보았다.다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대체할 수 있다.

  • PDF

Investigation into Low Velocity Impact Characteristics of the Stainless Steel Sheet with Thickness of 0.7 mm on the Stretching Condition using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 스트레칭 조건에서의 두께 0.7mm 스테인레스 강판의 저속 충격 특성 분석)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.80-87
    • /
    • 2008
  • This paper investigated into the impact characteristics of the stainless sheet with thickness of 0.7 mm on the stretching boundary condition through three-dimensional finite element analysis. High speed tensile tests were carried out to obtain strain-stress relationships with the effects of the strain rate. The FE analysis was performed by the ABAQUS explicit code. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor were introduced. Through the comparison of the results of the FE analyses and those of the impact tests, a proper FE model was obtained. The results of the FE analyses showed that the absorption rate of energy maintains almost 82.5-83.5% irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, variations of stress, strain, dissipation energy, strain energy density, and local deformation characteristics in the stainless sheet during the collision and the rebound of the impact head were quantitatively examined. In addition, it was shown that the fracture of the specimen occurs when the plastic strain is 0.42 and the maximum value of the plastic dissipation energy of the specimen is nearly 1.83 J.

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Yong-Kyun;Chai, Jong-Seo;Kim, Yu-Seog;Lee, Hye-Young
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.208-213
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy Particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor(SEM). 35MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy Protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

  • PDF

Resonant Formation Rates of Muonic Molecular ion in Muon-Catalyzed Fusion (뮤온 촉매 핵융합에서 뮤온 분자 이온의 공명 형성율)

  • Im, Ki-Hak;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.63-74
    • /
    • 1992
  • The resonant formation rates of muonic molecular ion dtr in the muon-catalyzed fusion are calculated in various fuel temperatures and densities. The elastic scattering cross sections between t$\mu$ and deuterons are obtained by making use of the partial wave method. The transition property of the excited compound molecule [(dt$\mu$)dee]* derived by the impulse approximation in the form of a bound-state form factor. The radiative, Auger, and collisional deexcitations are considered as the deexcitation mechanisms of the excited dt$\mu$, and each deexcitation width is calculated as well as back decay width. The resultant reaction widths are used to calculate the formation cross sections of resonant dt$\mu$. The resonant formation rates for dt$\mu$-d and dt$\mu$-t collisions are computed as functions of fuel temperature and density. The calculations show that the resonant formation rates increase with fuel densities and have the maximum values at the particular temperatures where the relative collision energies are equal to the resonant ones.

  • PDF

A Study on Heaping of Granules (알갱이 군의 무더기 현상에 관한 연구)

  • Han, Ji Heum;Han, Won Heum;Lee, Kwang-Hee
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.183-191
    • /
    • 2013
  • In order to elucidate the granular heaping phenomenon, the movement behaviors of 3 different types of granule (millet, sand and thin foil disc) have been investigated by applying the vertical or the rotational vibration to each of the 3 vessels, respectively containing one of the 3 types of granule. In case of vertical vibrations, all of them showed the heaping phenomenon like Gerner's simulation, and that in the order of the millet, sand and thin foil disc, regardlessly of weight. Especially, a heaping of disc granules was proven to be relatively delayed, and that with several small complex clutters. For rotational vibration, the central area of vessel turned out to rise up due to the repulsive force by vessel wall as well as the collision between elastic granules, right after the turning point of vibration. Even spiral pattern was made when the rotational vibration amplitude got higher. From these facts, one can see that the heaping be characterized by the inclusion of attractive granules as well as the vibrational type applied to granule vessel.

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Young-Kyun;Chai, Jong-Seo;Kim, Yu-Seong;Lee, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor (SEM). 35 MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

Analysis of the Pre-service Chemistry Teachers' Cognition of the Nature of Model in the Design and Development Process of Models Using Technology: Focusing on Boyle's Law (테크놀로지를 활용한 모델의 설계와 개발 과정에서 나타난 예비화학교사의 모델의 본성에 대한 인식 분석: 보일 법칙을 중심으로)

  • Na-Jin Jeong;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.378-392
    • /
    • 2023
  • The purpose of this study is to analyze the pre-service chemistry teachers' cognition of the nature of model in process of designing and developing models using technology. For this purpose, 19 pre-service chemistry teachers' in the 3rd grade of a education college located in the central region observe experimental phenomena related to Boyle's law presented in the 7th grade science textbook and researchers required the design and development of a model related to the observed experimental results using technology. Based on previous studies, the nature of model were classified into two aspect: 'Representational aspect' and 'Explanatory aspect'. The 'Representational aspect' was classified into 'Representation', 'Abstraction', and 'Simplification', and the 'Explanatory aspect' was classified into 'Analysis', 'Interpretation', 'Reasoning', 'Explanation', and 'Quantification'. The pre-service chemistry teachers' cognition were analyzed by the classification. As a result of the study, the 'Representation' of the 'expressive aspect' was uniformized in the form of space that changes in volume, and the pressure was expressed as the Brightness inside the cylinder or frequency of color change of particles for 'Abstraction'. In the case of 'Simplification', the particle collision was expressed as a perfectly elastic collision, but there was a group that could not simply indicate the type of particle. In the 'Explanatory aspect', in the case of 'Analysis', volume was classified as a manipulated variable, and in the case of 'Interpretation', most groups analyzed the change in pressure through the collision of gas particles. However, the cognition involved in 'Reasoning' was not observed much. In the case of 'Explanation', there were groups that did not succeed in explanation because the area where the particles collided was not set or incorrectly set, and in the case of 'Quantification', there was a group that formulated the number of collisions per unit time, and on the contrary, there was a group that could not quantify the number of collisions because they could not be expressed in numbers.

Interface study of ion irradiated Cu/Ni/Cu(001)/Si thin film by X-ray reflectivity (이온 조사된 Cu/Ni/Cu(001)/Si 자성박막에 있어서 X-ray reflectivity를 이용한 계면 연구)

  • Kim, T.G.;Song, J.H.;Lee, T.H.;Chae, K.H.;Hwang, H.M.;Jeon, G.Y.;Lee, J;Jeong, K.;Whang, C.N.;Lee, J.S.;Lee, K.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.184-188
    • /
    • 2002
  • The Cu/Ni/Cu(002)/Si(100) films which have perpendicular magnetic anisotropy were deposited by e-beam evaporation methods. From the reflection high energy electron diffraction pattern, the films were confirmed to be grown epitaxially on silicon. After 2X lots ions/$\textrm{cm}^2$ C+ irradiation, magnetic easy-axis was changed from surface normal to in-plane as shown in the hysteresis loop of magneto-optical Kerr effects. It became manifest from analysis of X-ray reflectivity and grazing incident X-ray diffraction that even though interface between top Cu layer and Ni layer became rougher, the contrast of Cu and Ni's electron density became manifest after ion irradiation. In addition, the strain after deposition of the films was relaxed after ion irradiation. Strain relaxation related with change of magnetic properties and mechanism of intermixed layer's formation was explained by thermo-chemical driving force due to elastic and inelastic collision of ions.