• 제목/요약/키워드: Elastic Structures

검색결과 1,849건 처리시간 0.026초

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

An experimental study on the hydro-elastic analysis of a circular cylindrical shell

  • Min, Cheon-Hong;Park, Han-Il;Teng, Bin;Kim, Byung-Mo
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Ocean structures and vehicles are exposed to severe ocean environment conditions such as waves, winds and currents. When such ocean structures and vehicles are designed, an accurate structure analysis is required to keep the system safely. Hydro-elastic analysis is one of key issues to design such structures and vehicles. In many previous investigations, numerical analyses for hydro-elastic problem have been used. In this study, an experimental analysis is carried out and the circular cylindrical shell is considered. Dynamical characteristics for a circular cylindrical shell are identified by experimental vibration analysis in air and water. The natural frequencies and mode shapes are compared in air and water to obtain hydro-elastic effects. Some interesting results are found in the variation of natural frequencies and damping ratios of the circular cylindrical shell for different water contact depths.

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang;Hui Liu;Yong Zhou;Kaixing Liao;Ying Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2147-2157
    • /
    • 2023
  • The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.

Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch

  • Mechab, Belaid;Chama, Mourad;Kaddouri, Khacem;Slimani, Djelloul
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1173-1182
    • /
    • 2016
  • The objective of this work was to evaluate the ductile cracked structures with bonded composite patch used in probabilistic elastic plastic fracture mechanics subjected to tensile load. The finite element method is used to analyze the stress intensity factors for elastic case, the effect of cracks and the thickness of the patch ($e_r$) are presented for calculating the stress intensity factors. For elastic-plastic the Monte Carlo method is used to predict the distribution function of the mechanical response. According to the obtained results, we note that the stress variations are important factors influencing on the distribution function of (J/Je).

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

탄성거동에 의한 유체력을 고려한 초대형 부유식 구조물의 유탄성응답 해석 (Hydroelastic Response Analysis of Very Large Floating Structures Including the Hydrodynamic Forces due to Elastic Motions in Waves)

  • 김철현;이창호;이승철;구자삼
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.101-107
    • /
    • 2006
  • Recently, with the increase in requirements for marine development, a marine urbanism is being visualized, with more and more huge-scale structures at the scope of the ocean space utilization. In particular, a pontoon-type structure has attracted attention, since The Floating Structures Association of Japan proposed a new concept as the most suitable one of floating airports. The Very Lage Floating Structure (VLFS) is considered a flexible structure, for a quite large length-to-breadth ratio and its geometrical flexibility. The main objective of this study is to makean exact and convenient prediction about the hydro-elastic response on very large offshore structures in waves. The numerical approach for the hydro-elastic responses is based on the combination of the three dimensional source distribution method and the dynamic response analysis method, which assumed a dividing pontoon type structure, as many rigid bodies connected elastic beam elements. The established hydo-elastic theory was applied to the radiation forces caused by motions of a whole structure, formulated using the global coordinate system, which has the origin at the center of the structure. However, in this paper, we took radiation forces, occurred by individual motions of floating bodies, into consideration. The calculated results show good agreement with the experimental and calculated results by Yago.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

직교 이방성 관통 다공 후판의 탄성 해석 (Elastic Analysis of Orthotropic Thick Plates with Perforated Many Holes)

  • 김우식;권택진
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 2002
  • The structures with many perforated openings are widely used as a load-carrying element in the fields of civil engineering works, top slab of prestressed concrete reactor vessel, petrochemical industries and the like. Perforated concrete plates are usually thick. Therefore, the effect of transverse shear deformation is not negligible. This paper describes a new analytical method of perforated plates combining both the finite element method for effective elastic constants and the usual method in solving orthotropic plate with transverse shear deformation.

  • PDF