• Title/Summary/Keyword: Elastic Spring

Search Result 397, Processing Time 0.023 seconds

Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation

  • Bakhadda, Boumediene;Bouiadjra, Mohamed Bachir;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.311-324
    • /
    • 2018
  • This work examines vibration and bending response of carbon nanotube-reinforced composite plates resting on the Pasternak elastic foundation. Four types of distributions of uni-axially aligned single-walled carbon nanotubes are considered to reinforce the plates. Analytical solutions determined from mathematical formulation based on hyperbolic shear deformation plate theory are presented in this study. An accuracy of the proposed theory is validated numerically by comparing the obtained results with some available ones in the literature. Various considerable parameters of carbon nanotube volume fraction, spring constant factors, plate thickness and aspect ratios, etc. are considered in the present investigation. According to the numerical examples, it is revealed that the vertical displacement of the plates is found to diminish as the increase of foundation parameters; while, the natural frequency increase as the increment of the parameters for every type of plate.

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

Simulation of cyclic response of precast concrete beam-column joints

  • Adibi, Mahdi;Talebkhah, Roozbeh;Yahyaabadi, Aliakbar
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Experience of previous earthquakes shows that a considerable portion of concrete precast buildings sustain relatively large damages especially at the beam-column joints where the damages are mostly caused by bar slippage. Precast concrete buildings have a kind of discontinuity in their beam-column joints, so reinforcement details in this area is too important and have a significant effect on the seismic behavior of these structures. In this study, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints in usual practice of precast concrete building. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints. In addition, the seismic behavior of the precast building damaged during Bojnord earthquake 13 May 2017, is investigated by using the proposed model for the beam-column joints. Damage unexpectedly inducing the precast building in the moderate Bojnord earthquake may confirm that bearing capacity of the precast building was underestimated without consideration of joint behavior effect.

Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.381-391
    • /
    • 2023
  • The aim of this work is to analyze and predict the wave propagation behavior of the carbon nanotube reinforced composites (CNTRC) beams within the framework of various higher order shear deformation beam theory. Using the Euler-Lagrange principle, the wave equations for CNTRC beams are derived, where the determining factor is to make the determinant equal to zero. Based on the eigenvalue method, the relationship between wave number and circular frequency is obtained. Furthermore, the phase and group velocities during wave propagation are obtained as a function of wave number, and the material properties of CNTRC beams are estimated by the mixture rule. In this paper, various higher order shear beam theory including Euler beam theory, Timoshenko beam theory and other beam theories are mainly adopted to analyze the wave propagation problem of the CNTRC beams, and by this way, we conduct a comparative analysis to verify the correctness of this paper. The mathematical model provided in this paper is verified numerically by comparing it with some existing results. We further investigate the effects of different enhancement modes of CNTs, volume fraction of CNTs, spring factor and other aspects on the wave propagation behaviors of the CNTRC beams.

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

A Study on Fashion Design of Silver Age -Focused on Elderly Women's Clothing Design Preference : An Application of Delphi Method- (실버패션디자인 연구 - 노년여성의 의복디자인선호도를 중심으로: 델파이법의 적용 -)

  • Chang, An-Hua
    • Fashion & Textile Research Journal
    • /
    • v.7 no.6
    • /
    • pp.577-584
    • /
    • 2005
  • The aims of this study are primary data offer to silver fashion enterprise. In order to deduce design from diverse needs of silver generation, this study is required expert knowledge. For this purpose, this study applied two rounded Delphi method in which 31 experts. As a result, the following findings were obtained; From the previous studies, we found the physical changes of women in silver generation; i.e. the size of their waist and abdomen gets larger, their breasts are sagging, their limbs are thinner, upper body is bending, their height and weight get shorter and lighter. Their choice criterion of design of clothing is hide their weak points in body, youthfulness, moderate, and fashion style. Youthful design but patterns should agree with their body line so that they should be easily fit and look young. They like a jacket and pants set best regardless of spring or summer and as upper garment, they like semi fit, as pants, they prefer straight line of ankle length, and as skirts, partial elastic band and pleats, and the length of the skirts just cover their knees. This pattern in choosing their clothes represents they consider functionality as well as the aesthetics. Their preferred color for spring is lt/pink, lt/violet lt/green for summer, white and blue. Their preferred materials are wool/poly/spandex and cotton/spandex for functionality for spring, and for summer, linen poly and cotton poly seersucker for cool feeling and stability. In both top and bottom item, solid pattern follows small one in their preference on patterns, which shows that they are in pursuit of an elegant style. Our research based on this survey tries to establish what the fashion design for the silver generation should take into consideration.

A Study on the Finite Element Analysis of springback characteristics according to stamping process conditions of UHSS with UTS of 1.2GPa (1.2GPa급 초고강도강판의 공정조건에 따른 스프링백 특성에 관한 유한요소해석 연구)

  • Jang, Hyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The biggest topics in the automobile industry are light weightening and fuel efficiency improvement. There's a lot of research going on. It is focused on light weight materials. Light weight material is seen as the best way to reduce fuel consumption and to solve the problem of environmental pollution and resource depletion. For the light weight materials, new materials such as aluminum, magnesium, and carbon-hardening materials can be found. Research on the joining techniques of dual materials, improvement of material properties by improving the method of manufacture of existing materials, and studies on ultra-high strength steel sheets are expected to take up the most weight in lightweight materials. As the strength of the ultra-high strength steel sheets increases during forming, it is difficult to obtain dimensional precision due to the increase in elastic restoring force compared to mild or high strength steel sheets. Spring back is known to be affected by a number of factors due to poor plastic molding, and can be divided into the effects of the material spraying and the process. The study on the plasticitic variables were studied as plasticitic factors that can be controlled by a part company. Tensile testing of ultra-high strength materials was conducted to derive properties for plasticitic analysis and to analyze spring back with two factors controlling the height of the bead and blank holding force by adding tensile force and controlling the flow rate.

Optimal design of car suspension springs by using a response surface method (반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계)

  • Yoo, Dong-Woo;Kim, Do-Yeop;Shin, Dong-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.