• Title/Summary/Keyword: Elastic Rubber

Search Result 244, Processing Time 0.022 seconds

Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds (모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사)

  • Park, Dong-Myung;Kim, Hok-Joo;Yoon, Jae-Ryong;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.223-230
    • /
    • 2006
  • Rubber compounds have a high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate, and the amount of swelling varies with operational conditions in extrusion. It is well recognized that the elastic portion in the viscoelastic property plays an important role in the extrudate swell. In this study computer simulation of the die swell at the capillary die for several rubber compounds has been performed using commercial CFD code, Polyflow. A non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model, was used in the computer simulation. Non-isothermal behavior was considered in the calculation. Distribution of pressure, velocity and temperature in the reservoir and capillary die, and extrudate profiles were predicted through the simulation. The amount of the die swell fur the different rubber compounds was investigated for various flow rates and three types of length to diameter of the capillary die. It is concluded that the PTT model successfully represented viscoelastic behavior of rubber compounds.

A Study on Dynamic Properties for the Filler Compounded NR Vulcanizates ( I ) (각종(各種) 충전제(充塡劑)를 배합(配合)한 천연(天然)고무 강황체(加黃體)의 특성(特性)에 관(關)한 연구(硏究) ( I )(동적(動的) 특성(特性)에 관(關)하여))

  • Choi, Jae-Woon;Herh, Dong-Sub;Hong, Chung-Sug
    • Elastomers and Composites
    • /
    • v.19 no.4
    • /
    • pp.231-242
    • /
    • 1984
  • NR vulcanizate has its unigue characteristic of cushion, silence, vibration energy absorbtion etc. By reason of the above captioned characters, The vulcanizate has been widely applied to production of auto tires, belts and engine mounts, The purpose of this study is to examine the effect of rubber-filler attachments on the various dynamic properties of the NR vulcanizates. For this study, the elastic modulus and damping values are examined by means of the (RDS) the Good Rich Flexometer. The results of this study showed as follows. The damping values of the vulcaniz ates in the elastic region showed showed strong relations the damping values and the filler characteristics. The vulvanizates filled with carbon black had higher damping values than the vulcanizates loaded with inorganic filler. The Goodrich Flexometer test showed that build up for the silica filled NR vulcanizates was higher than those for which contained other fillers.

  • PDF

J-integral of Penny-Shaped Crack on the End of Stiff Fiber Embedded in Rubbery Materials (고무와 섬유로 구성된 복합체 내의 섬유 끝 부분의 원형 균열에 대한 J-적분)

  • Yang, Gyeong-Jin;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.617-624
    • /
    • 2002
  • An equation of J-integral for a penny-shaped crack at the end of the fiber embedded in rubber matrix is proposed. The values of J-integral for the specimens with various crack and specimen radius are obtained by FEA(Finite Element Analysis). The dimensional analysis is applied to derive an equation of J-integral as a nonlinear elastic energy release rate. The geometry and deformation calibration function in an equation of J can be expressed in a separated form. The geometry calibration function characterizing the effects of cord and specimen size is expressed in a polynomial form of fourth order. The deformation calibration function characterizes the effect of the overall level of strain. As approaching the infinitesimal strain, the value of the deformation calibration function approaches the results of LEFM(Linear Elastic Fracture Mechanics).

Cyclic loading response of footing on multilayered rubber-soil mixtures

  • Tafreshi, S.N. Moghaddas;Darabi, N. Joz;Dawson, A.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.115-129
    • /
    • 2018
  • This paper presents a set of results of plate load tests that imposed incremental cyclic loading to a sandy soil bed containing multiple layers of granulated rubber-soil mixture (RSM) at large model scale. Loading and unloading cycles were applied with amplitudes incrementally increasing from 140 to 700 kPa in five steps. A thickness of the RSM layer of approximately 0.4 times the footing diameter was found to deliver the minimum total and residual settlements, irrespective of the level of applied cyclic load. Both the total and residual settlements decrease with increase in the number of RSM layers, regardless of the level of applied cyclic load, but the rate of reduction in both settlements reduces with increase in the number of RSM layers. When the thickness of the RSM layer is smaller, or larger, settlements increase and, at large thicknesses may even exceed those of untreated soil. Layers of the RSM reduced the vertical stress transferred through the foundation depth by distributing the load over a wider area. With the inclusion of RSM layers, the coefficient of elastic uniform compression decreases by a factor of around 3-4. A softer response was obtained when more RSM layers were included beneath the footing damping capacity improves appreciably when the sand bed incorporates RSM layers. Numerical modeling using "FLAC-3D" confirms that multiple RSM layers will improve the performance of a foundation under heavy loading.

Energetic Thermoplastic Elastomers from Azidated Polyepichlorohydrin Rubber (Az-PECH)/ Styrene Acrylonitrile Copolymer (SAN) Blends (아지드화 폴리에피클로로히드린 고무/스티렌-아크릴로니트릴 공중합체 블렌드로부터 에너지함유열가소성탄성체 제조)

  • Choi, Myung-Chan;Chang, Young-Wook;Noh, Si-Tae;Kwon, Jung-Ok;Kim, Dong-Kook;Kwon, Soon-Kil
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.375-380
    • /
    • 2009
  • Polyepichlorohydrin rubber was treated with sodium azide (Na$N_3$) to replace its chlorine by azide ($N_3$). Then, the azidated polyepichlorohydrin rubber (Az-PECH) was blended with thermoplastic styrene-acrylonitrile copolymer with the rubber/plastic ratio of 80/20, 70/30 and 60/40 (wt/wt). The miscibility, mechanical and dynamic mechanical properties as well as elastic recovery properties of the blends were evaluated by DMA (Dynamic Mechanical Analyzer) and tensile tests. When azidation level in azidated PECH was upto 50%, the blends exhibited excellent miscibility, manifested by a single $T_g$, and fairly good elastic recovery. When azidation level was 75%, the blends showed phase separation. The miscible Az-PECH/SAN blends exhibited typical thermoplastic elastomer like properties, ie. melt processibility and high extensibility as well as good elastic recovery rate. It was also observed from combustion test that higher energy is released with the increase in the azidation level of the Az-PECH in the blends.

The Effects of Cure System on Vulcanization Reaction Constant and Physical Properties of Rubber Compounds (가황시스템 변화가 배합고무의 가황반응속도 및 물리적 특성에 미치는 영향)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.419-426
    • /
    • 1999
  • In this study, the reaction rate constant, activation energy, total crosslinking density, elastic constant, cure properties ($t_5,\;t_{90}$), modulus, and abrasion resistance of rubber compounds were investigated as a function of cure temperatures, cure systems and reinforcing filler loadings. Reaction rate constants showed strong dependence on thc carbon black loading, cure temperature and cure system, and increased sharply with increasing the reaction temperatures. The lowest activation energy was obtained in the efficient cure (EC) system which corresponds to the high level of sulfur to accelerator ratio, and the activation energy was decreased with decreasing the carbon black loadings. The change of carbon black loadings directly affects the modulus and abrasion resistance, but the change of cure system showed various effects on the rubber compounds. Increased carbon black loadings showed the high modulus, improved abrasion resistance and short scorch time but decrease in crosslinking density and elastic constant. Higher crosslinking density and elastic constant were shown in the EC cure system regardless of carbon black loadings, but scorch timc ($t_5$) was not affected by the change of the ratio of sulfur to accelerator. Rapid optimum cure time ($t_{90}$) were showen in the EC cure system. Also, the equivalent cure curve coefficient of rubber compound was 0.96 for conventional cure (CC) system, and 0.94 for semi-efficient cure (SEC) and EC system regardless carbon black loadings. As regarding the abrasion resistance, wear volume showed the logarithmic increase for the loaded weight.

  • PDF

A study on the dynamic characteristics of the cord-rubber laminates rectangular plate by finite element method (유한요소법을 이용한 코오드-고무 복합판의 동적특성에 관한 연구)

  • 김두만;김항욱
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.51-64
    • /
    • 1986
  • There has been considerable interest over the last twenty years in the subject of the elastic properties of the cord-rubber laminate. This has been due to the rather intensive study of the composites materials characteristics brought about by the increased use of rigid composites materials characteristics brought about by the increased use of rigid composites in many structural applications. The object of this study is to obtain the natural frequencies and modes of the simply supported cord-rubber laminate plates prior to the study on the analysis of the dynamic properties of the pneumatic tire. To obtain these natural frequencies and modes, the 12 degrees of freedom orthotropic rectangular plate finite elements are developed. By using classical lamination theory, the stress-strain relations are represented. The governing equation for the finite element is derived by energy method. To find the natural frequencies and modes, he eigenvalues and corresponding eigenvectors are computed by the well known Jacobi power method. In order to verify the capability of this present finite element, the results of the specially orthotropic plate and the angle-ply laminate plate are compared with the analytical solution. The analytical and numberical results are in good agreement. The following problems of the simply supported plate are analyzed by the present finite element. a) the natural frequencies and mode shapes of the cord-rubber laminate plate for various aspect ratio. b) The natural frequencies and mode shapes of the orthotropic plate with the rectangular hole in its center.

  • PDF

A Study on Dynamic Properties for Filler Compounded NR Vulcanizates (충전제(充塡劑)를 배합(配合)한 NR가황체(加黃體)의 동적(動的) 성질(性質)에 관(關)한 연구(硏究))

  • Chun, Kyung-Soo;Choi, Jae-Woon
    • Elastomers and Composites
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 1992
  • The purpose for this study is to examine the vulcanization characteristics, especially the damping, elastic modulus and viscous modulus properties of filler 50phr filled NR compounds and to find out the compounds which can be used as damping materials in industry. For this study, compounds were prepared with filler filled compounding formula. Their vulcanization characteristics, elastic modulus, viscous modulus and damping properties were examined by mean of the rheometrics dynamic spectrometer. The results of this study can be summarized as follows. 1. The elastic modulus values of the maxium under the condition of 1Hz frequency, showed the order as follows, $HAF>Silica>FEF>GPF>SRF>Clay>CaCO_3\;coated>CaCO_3$. 2. The damping values of the maxium under the condition of 1Hz frequency, showed the order as follows $Silica>HAF>FEF>GPF>SRF>Clay>CaCO_3\;coated>CaCO_3$.

  • PDF

Comparative Analysis of Muscle Activities for Upper Extremity During Resistance Exercises Using Variable and Elastic Loads (가변부하 및 탄성부하를 이용한 저항성 기구 운동 시 발현되는 상지근육의 근 활동치 비교분석)

  • Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.37-44
    • /
    • 2006
  • The purposes of this study were to analyze and compare EMG activities of the pectoralis major, biceps brachii, triceps brachii, and brachioradialis muscles during biceps curls using a VRT device and an elastic tubing. Fifteen male college students were recruited as subjects and they performed 10-RM and 20-RM biceps curls. For each load and device condition, the mean and peak normalized EMG levels during different phases of a biceps curl were computed. For each load and phase, paired t-test (p.05) was used to find the significant difference between two devices. ANOVA with repeated measures was also used to find the significant difference among phases in terms of EMG values for each muscle. For each load and device condition, the peak and mean EMG levels during different phases of a biceps curl were computed The significant differences between devices were found in biceps brachii for EA, MD, LD phases, and triceps brachii muscles for all phases, respectively. However, no differences were found among phases for any muscle. This indicated that elastic band could have a similar characteristics of VRT. High antagonistic muscle activity as a function of injury prevention which found particularly in VRT device may suggest that elastic tubing can be a safer training device than VRT. This also imply that elastic tubing could be very effective as a home exercise tool for rehabilitation patients and elderly people.

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.