• Title/Summary/Keyword: Elastic Pipe

Search Result 204, Processing Time 0.028 seconds

Elastic-Plastic Fracture Mechanics Analyses For circumferential Part-through Surface Cracks At The Interface Between Elbows and Pipes (직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1766-1771
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes.

  • PDF

Failure mechanisms of a rigid-perfectly plastic cantilever with elastic deformation at its root subjected to tip pulse loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 1994
  • In this paper, the effect of material elasticity was evaluated through a simple model as proposed by Wang and Yu (1991), for yield mechanisms of a cantilever beam under tip pulse loading. The beam was assumed rigid-perfectly plastic but instead of the usual fully clamped constraints at its root, an elastic-perfectly plastic rotational spring was introduced there so the system had a certain capacity to absorb elastic energy. Compared with a rigid-perfectly plastic beam without a spring root, the present beam-spring model showed differences in the initial plastic hinge position and the minimum magnitude of the dynamic force needed to produce a plastic failure. It was also shown that various failure responses may happen while the hinge travels along the beam segment towards the root, rather than a unique response mode as in a rigid perfectly plastic analysis.

Effect of Creep Mismatch Factor on Stress Redistribution in Welded Branch (분기관 용접부의 크리프 특성 불균일이 응력 재분배에 미치는 영향)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Yoo, Kee-Bong;Nikbin, Kamran;Dean, Dave
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.293-298
    • /
    • 2008
  • This paper attempts to quantify the effect of mismatch in creep properties on steady-state stress distributions for a welded branch vessel. A particular geometry for the branch vessel is chosen. The vessel is modeled by only two materials, the base and weld metal. Idealized power law creep laws with the same creep exponents are assumed for base and weld metals. A mismatch factor is introduced, as a function of the creep constant and exponent. Steady-state stress distributions within the weld metal, resulting from threedimensional, elastic-creep finite element (FE) analyses, are then characterized by the mismatch factor. We can find that average stresses in the weld can be characterized by the mis-match factor. And there is an analogy between elastic-creep and elastic-perfectly plastic.

  • PDF

Energy Transmission of Elastic Waves in Ultrasonic Transducers for Flow Velocimetry (유속 측정용 초음파 트랜스듀서의 탄성파 에너지 투과율)

  • Piao, Chunguang;Kim, Dae Jong;Kim, Jin Oh;Kim, Dong Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.733-735
    • /
    • 2014
  • The paper deals with the energy transmission ratio of the elastic waves obliquely transmitting through a plate and a pipe. The incidence angle corresponding to the maximum transmission was determined theoretically and considered in the design of ultrasonic transducers for flow velocimetry. Experimentally-obtained transmission ratios were compared with and confirmed the theoretically-calculated results.

  • PDF

Energy Transmission of Elastic Waves in Ultrasonic Transducers (초음파 트랜스듀서의 탄성파 에너지 투과율)

  • Piao, Chunguang;Kim, Dae Jong;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.124-132
    • /
    • 2015
  • The paper deals with the energy transmission of the elastic waves obliquely transmitting and refracting through a plate and a pipe. By calculating the transmitting ratio depending on the incidence angle, the angle corresponding to the maximum transmission was determined theoretically and considered in the design of ultrasonic transducers for flow velocimetry. Experiments were carried out by using prototypes of the transducers. Experimentally-obtained transmission ratios were compared with and confirmed the theoretically-calculated results.

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution - (배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 -)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.

Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes

  • Chen, Xiaohui;Chen, Xu;Chen, Gang;Li, Duomin
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.29-50
    • /
    • 2015
  • With a quasi-three point bending apparatus, ratcheting deformation is studied experimentally on a pressurized austenitic stainless steel Z2CND18.12N pipe under bending load and vertical displacement control, respectively. The characteristic of ratcheting behavior of straight pipe under both control methods is achieved and compared. The cyclic bending loading and internal pressure influence ratcheting behavior of pressurized straight pipe significantly under loading control and the ratcheting characteristics are also highly associated with the cyclic displacement and internal pressure under displacement control. They all affect not only the saturation of the ratcheting strain but the ratcheting strain rate. In addition, ratcheting simulation is performed by elastic-plastic finite element analysis with ANSYS in which the bilinear model, Chaboche model, Ohno-Wang model and modified Ohno-Wang model are applied. By comparison with the experimental data, it is found that the CJK model gives reasonable simulation. Ratcheting boundaries under two control modes are almost same.

Effect of Pile Driving on Three Layered Pipeline according to Soil Properties Variation (지반 물성값에 따른 항타 진동이 지중 삼중관에 미치는 거동 분석)

  • Yoo, Han-Kyu;Choi, Joung-Hyun;Won, Jong-Hwa;Kim, Moon-Kyum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.765-770
    • /
    • 2010
  • In this study, the behavior of underground pipeline subjected to pile driving is examined using the verified finite element model based on the field experiment. Young's modules of surface soil is varied and elastic modulus of the other soil layer is fixed. The pile driving force model proposed by Mounir E. Mabsout in 1999 was used and it was functions of time and of force. The forcing function applied on this study considers the kinetic energy of ram located at 1.2m height with 7 tonf. The 3-layered pipeline is composed of steel(inner) pipe, PUR(Polyurethane Resin, filler) and HDPE(outer) pipe, and the length/diameter of main steel pipe is 20m/0.8m(O.D). It is used for district heating pipes in Korea. The results are expressed in terms of Von Mises stress, displacement, and vibration velocity for each soil condition. From the results of the analyses, PUR which is originally intended as a thermal insulation of inner pipe shows performance as a structural member which distributes external pressure.

  • PDF

Numerical Prediction of the Outer Diameter for SAW Pipes Formed by Press-Brake Bending (프레스-브레이킹 굽힘 공정을 이용한 SAW 후육강관의 외경 예측을 위한 해석적 연구)

  • Park, G.B.;Kang, B.K.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • Press-brake bending is used to shape flat and thick plates into a targeted circular configuration without excessive localized thinning or thickening. A brake bending press called 'a knife press bending apparatus' has been widely adopted to manufacture thick, large and long pipe from initially thick plate. Submerged Arc Welded (SAW) pipes are also produced by employing press-brake bending. These pipes are mainly used for oil, natural gas and water pipelines. The principal process variables for press-brake bending can be summarized as stroke of the press-brake knife, the distance between both roll in the lower die, and the feeding length of the plate. Many combinations of these process variables are available, thus various pipe diameters can be realized. In the current study, a series of repetitive numerical simulations by feeding a thick plate with initial thickness of 25.4mm were conducted with the consideration of elastic recovery. Furthermore, an index for SAW pipe production is proposed which can be widely used in industry.