• Title/Summary/Keyword: Elastic Motion

Search Result 702, Processing Time 0.027 seconds

전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가 (Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator)

  • 팽용석;육지용;문석준;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates

  • Farokhian, Ahmad
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.733-742
    • /
    • 2020
  • Vibration analysis in nanocomposite plate with smart layer is studied in this article. The plate is reinforced by carbon nanotubes where the Mori-Tanaka law is utilized for obtaining the effective characteristic of structure assuming agglomeration effects. The nanocomposite plate is located in elastic medium which is simulated by spring element. The motion equations are derived based on first order shear deformation theory and Hamilton's principle. Utilizing Navier method, the frequency of the structure is calculated and the effects of applied voltage, volume percent and agglomeration of Carbon nanotubes, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with applying negative voltage, the frequency of structure is increased. In addition, the agglomeration of carbon nanotubes reduces the frequency of the nanocomposite plate.

초음파 점도계용 고체 매질의 탄성파와 인접 점성유체 간의 상호작용 (The Interaction Between Stress Waves in Elastic Solids for an Ultrasonic Viscometer and Adjacent Viscous Fluids)

  • 김진오
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.28-34
    • /
    • 1999
  • 인접 점성 유체의 점도가 탄성파의 전파특성에 미치는 효과를 이론적 및 실험적으로 연구하였다. 원형막대에서 전파하는 비틂파와 박막 덮인 반무한 고체에서 전파하는 Love파와 같이 전단운동을 하는 탄성파에 대해서 전파속도와 감쇠의 표현을 유체의 점도와 밀도의 함수로써 엄밀해와 근사해로 구하였다. 이론적 결과는 실험 결과와 비교하였으며, 실험에 사용된 장치는 유체의 밀도를 알 때 점도를 측정하는 센서로 활용될 가능성을 보였다.

  • PDF

탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석 (Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed)

  • 이기수
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향 (Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Wave propagation in a generalized thermo elastic circular plate immersed in fluid

  • Selvamani, R.;Ponnusamy, P.
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.827-842
    • /
    • 2013
  • In this paper, the wave propagation in generalized thermo elastic plate immersed in fluid is studied based on the Lord-Shulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and fluid are obtained by the perfect-slip boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency, phase velocity and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the fluid interaction.

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

대형부체구조물(大型浮體構造物)의 유체(流體)·탄성체(彈性體) 연성거동의 이론적 해석에 관한 연구(硏究) (A theoretical study on the hydroelastic behavior of Large floating offshore structures)

  • 이상엽;나용호
    • 한국산업융합학회 논문집
    • /
    • 제4권4호
    • /
    • pp.433-439
    • /
    • 2001
  • A large floating structure is attracting great attention in recent years from the view of ocean space utilization. Its huge scale in the horizontal directions compared with the wavelength and relatively shallow depth make this type of floating structure flexible and its wave-induced motion be characterized by the elastic deformation. In this paper, a boundary integral equation method is proposed to predict the wave-induced dynamic response mat-like floating offshore structure. The structure is modeled as an clastic plate and its elastic deformation is expressed as a superposition of free-vibration modes in air. This makes it straightforward to expand the well-established boundary integral technique for rigid floating bodies to include the hydroelastic effects. In order to validate the theoretical analysis, we compare with the experimental result of previous model test. Satisfactory agreement is found between theory and experiment.

  • PDF