• 제목/요약/키워드: Elastic Foundation Effect

검색결과 254건 처리시간 0.018초

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Dynamics of a rotating beam with flexible root and flexible hub

  • Al-Qaisia, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.427-444
    • /
    • 2008
  • A mathematical model for the nonlinear dynamics of a rotating beam with flexible root attached to a rotating hub with elastic foundation is developed. The model is developed based on the large planar and flexural deformation theory and the potential energy method to account for axial shortening due to bending deformation. In addition the exact nonlinear curvature is used in the system potential energy. The Lagrangian dynamics and the assumed mode method is used to derive the nonlinear coupled equations of motion hub rotation, beam tip deflection and hub horizontal and vertical displacements. The derived nonlinear model is simulated numerically and the results are presented and discussed for the effect of root flexibility, hub stiffness, torque type, torque period and excitation frequency and amplitude on the dynamic behavior of the rotating beam-hub and on its stability.

Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities

  • Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.393-414
    • /
    • 2017
  • Forced vibration behavior of porous metal foam nanoplates on elastic medium is studied via a 4-variable plate theory. Different porosity distributions called uniform, symmetric and asymmetric are considered. Nonlocal strain gradient theory (NSGT) containing two scale parameters is employed for size-dependent modeling of porous nanoplates. The present plate theory satisfies the shear deformation effect and it has lower field variables compared with first order plate theory. Hamilton's principle is employed to derive the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, dynamic loading, porosity distributions and porosity coefficient on dynamic deflection and resonance frequencies of metal foam nanoscale plates are examined.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Effect of exercise on the stability of protein tissues

  • Liu, Weixiao;Liu, Yaorong
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.487-497
    • /
    • 2022
  • This study investigates the stability of protein tissues regarding the vibration analysis based on the classical beam theory coupled with the nonlocal elasticity theory concerning the exercise impact. As reported in the previous research, four different types of protein tissues are supposed, and the influence of sports training is investigated. The protein tissues are made of protein fibers surrounded by an elastic foundation. The exercise enhances the muscle area and plays an essential role in the stability and strength of protein and muscle tissues. The results are examined in detail to examine the impact of different parameters on the stability of nano protein fibers.

골유착성 임플랜트 보철물 장착시 하악골의 탄성변형 및 응력분포에 관한 삼차원 유한요소법적 연구 (A STUDY ON THE ELASTIC DEFORMATION AND STRESS DISTRIBUTION OF THE MANDIBLE WITH OSSEOINTEGRATED IMPLANT PROSTHESES USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD)

  • 김용호;김영수;김창회
    • 대한치과보철학회지
    • /
    • 제36권2호
    • /
    • pp.203-244
    • /
    • 1998
  • The human mandible is always under the condition of loading by the various forces extorted by the attached muscles. The loading is an important condition of the stomatognathic system. This condition is composed of the direction and amount of forces of the masticatory muscles, which are controlled by the neuromuscular system, and always influenced by the movement of both opening and closing. Mandible is a strong foundation for the teeth or various prostheses, nevetheless it is a elastic body which accompanies deformation by the external forces on it. The elastic properties of the mandible is influenced by the various procedures such as conventional restorative treatments, osseointegrated implant treatments, reconstructive surgical procedures and so forth. Among the treatments the osseointegrated implant has no periodontal ligaments, which exist around the natural teeth to allow physiologic mobility in the alveolar socket. And so around the osseointegrated implant, there is almost no damping effect during the transmission of occlusal stress and displacements. If the osseointegrated implants are connected by the superstructure for the stabilization and effective distribution of occlusal stresses, the elastic properties of mandible is restricted according to the extent of 'splinting' by the superstructure and implants. To investigate the change of elastic behaviour of the mandible which has osseointegrated implant prosthesis of various numbers of implant installment and span of superstructre, a three dimensional finite element model was developed and analyzed with conditions mentioned above. The conclusions are as follows : 1. The displacements are primarily developed at the area of muscle attachment and distributed all around the mandible according to the various properties of bone. 2. The segmentation in the superstructure has few influence on the distribution of stress and displacement. 3. In the load case of ICP, the concentration of tensional stress was observed at the anterior portion of the ramus($9.22E+6N/m^2$) and at the lingual portion of the symphysis menti($8.36E+6N/m^2$). 4. In the load case of INC, the concentration of tensional stress was observed at the anterior portion of the ramus($9.90E+6N/m^2$) and the concentration of tensional stress was observed at the lingual portion of the symphysis menti($2.38E+6N/m^2$)). 5. In the load case of UTCP, the relatively high concentration of tensional stress($3.66E+7N/m^2$) was observed at the internal surface of the condylar neck.

  • PDF

크리이프를 고려한 매스콘크리트의 수화열에 대한 온도응력 해석 (Thermal Stress Analysis on ike Heat of Hydration for Mass Concrete Considering Creep Effect)

  • 김진근;이종대;김국한
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.67-72
    • /
    • 1992
  • The heat of hydration of cement causes the internal temperature rise at early age, particulary in massive concrete structures such as a footing of nuclear reactor building or a dam. As the result of the temperature rise and restraint of foundation, the thermal stress may induce cracks in concrete. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, in case of young concrete, creep effect by the temperature load is larger than That of old concrete. Thus the effect of creep must be considered for checking the cracks, serviceability, durability and leakage. This study is composed of two items. The first, it is to develop a finite element program which is capable of simulating the temperature history in mass concrete. The second, when the thermal stress of mass concrete structures considering creep is calculated by using the modified elastic modulus due to the inner temperature change. It is shown that the analytical results of this study is in comparably good agreement with JCI's analytical results.

  • PDF

지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구 (III) - 제3보 상대강성의 영향 - (An Analysis of the Farm Silo Supported by Ground)

  • 조진구;조형영
    • 한국농공학회지
    • /
    • 제29권2호
    • /
    • pp.39-52
    • /
    • 1987
  • This study was to investigate the effects of soil-structure relative stiffness on the structural characteristics of the cylindrical tank supported by soil. A standard example model of the farm silo rested on the Winkler's subsoil model was used for the analysis of soil-structure coupled system. In this paper, Winkler's constants 4,15 and l00kg/cm$^2$/cm were considered and the bottom plate thicknesses of the farm silo 20, 30, 50,100 and 150cm were adopted. For the given model the effects of bottom plate thickness were the most conspicuous at weakest Winkler's constant 4kg/ cm$^2$/cm. While when Winkler's constant is l00kg/cm$^2$/cm, the effect of the bottom plate thickness is almost negligible. On the other hand, when the bottom plate thickness is more than 100cm, the effects of elastic foundation were aknost disappeared. In design practice, it is hoped that the thicknesses of bottom plate should be determined reasonably because of it's considerable effect on the structural characteristics as the lOOcm thickness of bottom plate will not be practical value in usual sites.

  • PDF

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.

Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories

  • Mousavi, S. Behnam;Amir, Saeed;Jafari, Akbar;Arshid, Ehsan
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.235-251
    • /
    • 2021
  • In the current study, the free vibrational behavior of a Porous Micro (PM) beam which is integrated with Functionally Graded Piezoelectric (FGP) layers with initial curvature is considered based on the two trigonometric shear deformation theories namely SSDBT and Tan-SDBT. The structure's mechanical properties are varied through its thicknesses following the given functions. The curved microbeam is exposed to electro-mechanical preload and also is rested on a Pasternak type of elastic foundation. Hamilton's principle is used to extract the motion equations and the MCST is used to capture the size effect. Navier's solution method is selected as an analytical method to solve the motion equations for a simply supported ends case and by validating the results for a simpler state with previously published works, effects of different important parameters on the behavior of the structure are considered. It is found that although increasing the porosity reduces the natural frequency, but enhancing the volume fraction of CNTs increasing it. Also, by increasing the central angle of the curved beam the vibrations of the structure increases. Designing and manufacturing more efficient smart structures such as sensors and actuators are of the aims of this study.